Skip to main content

Chemistry in dense molecular clouds: Theory and observational constraints

  • Chemistry
  • Conference paper
  • First Online:
Molecular Clouds in the Milky Way and External Galaxies

Part of the book series: Lecture Notes in Physics ((LNP,volume 315))

Abstract

For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. We present a brief review of the basic assumptions and results of large scale modeling of the chemistry in dense molecular clouds. Particular attention will be paid to the influence of the gas phase ratios of the major elements in molecular clouds, and the likely role grains play in maintaining these ratios as clouds evolve from initially diffuse objects to denser cores with associated stellar and planetary formation.

Recent spectral line surveys at centimeter and millimeter wavelengths along with selected observations in the submillimeter have now produced an accurate “inventory” of the gas phase elemental budgets in different types of molecular clouds, though gaps in our knowledge clearly remain. The constraints these observations place on theoretical models of interstellar chemistry can be used to gain insights into why the models fail, and show also which neglected processes must be included in more complete analyses. Looking toward the future, truly protostellar regions are only now becoming available for both experimental and theoretical study, and some of the expected modifications of molecular cloud chemistry in these sources are therefore outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herbst, E. 1987, Interstellar Processes, Hollenbach, D.J. and Thronson, H.A., Jr. eds., D. Reidel Publ., 611.

    Google Scholar 

  2. Prasad, S.S. et al. 1987, Interstellar Processes, Hollenbach, D.J. and Thronson, H.A., Jr. eds., D. Reidel Publ., 631.

    Google Scholar 

  3. Irvine, W.M., Goldsmith, P.F., and Hjalmarson, A. 1987, Interstellar Processes, Hollenbach, D.J. and Thronson, H.A., Jr. eds., D. Reidel Publ., 561.

    Google Scholar 

  4. Spitzer, L., Jr. 1978, Physical Processes in the Interstellar Medium, Wiley and Sons, Inc.

    Google Scholar 

  5. [5] Gas Phase Ion Chemistry, M.T. Bowers, ed., 1979, Academic Press.

    Google Scholar 

  6. Clary, D.C. 1985, Mol. Phys. 54, 605.

    Google Scholar 

  7. Boland, W. and de Jong, T. 1984, Astr. Ap. 134, 87.

    Google Scholar 

  8. Tarafdar, S.P. et al. 1985, Ap. J. 289, 220.

    Google Scholar 

  9. Prasad, S.S. and Huntress, W.T., Jr. 1980, Ap. J. Suppl. 43, 1.

    Google Scholar 

  10. Hagen, W., Tielens, A.G.G.M., and Greenburg, J.M. 1983, Astr. Ap. 117, 132.

    Google Scholar 

  11. Greenburg, J.M. 1983, Workshop on Laboratory and Observational Infrared Spectra of Interstellar Dust, Wolstencroft, R.D. and Greenburg, J.M., eds., Royal Observatory of Edinburgh Publ., 1.

    Google Scholar 

  12. Gillet, F.C. and Forrest, W.J. 1973, Ap. J. 179, 483.

    Google Scholar 

  13. Williams, D.A. and Hartquist, T.W. 1984, Mon. Not. Roy. Astr. Soc. 210, 41.

    Google Scholar 

  14. Leger, A., Jura, M., and Omont, A. 1985, Astr. Ap. 144, 147.

    Google Scholar 

  15. d'Hendecourt, L.B., Allamandolla, L.J., and Greenburg, J.M. 1985, Astr. Ap. 152, 130.

    Google Scholar 

  16. Johansson, L.E.B. et al. 1984, Astr. Ap. 130, 227.

    Google Scholar 

  17. Cummins, S.E., Linke, R.A., and Thaddeus, P. 1986, Ap. J. Suppl. 60, 819.

    Google Scholar 

  18. Sutton, E.C. et al. 1984, Ap. J. Suppl. 58, 341.

    Google Scholar 

  19. Blake, G.A. et al. 1986, Ap. J. Suppl. 60, 357.

    Google Scholar 

  20. Blake, G.A. et al. 1987, Ap. J. 315, 621.

    Article  Google Scholar 

  21. Wilson, R.W., Jefferts, K.B., and Penzias, A.A. 1970, Ap. J.(Letters) 161, L43.

    Google Scholar 

  22. Herbst, E. and Leung, C.M. 1986, Ap. J. 310, 378.

    Google Scholar 

  23. Leung, C.M., Herbst, E., and Huebner, W.F. 1984, Ap. J. Suppl. 56, 231.

    Google Scholar 

  24. Phillips, T.G. et al. 1985, Ap. J.(Letters) 294, L45.

    Google Scholar 

  25. Plambeck, R.L. and Wright, M.C.H. 1987, Ap. J.(Letters) 317, L101.

    Google Scholar 

  26. Barlow, S.E., Dunn, G.H., and Schauer 1984, K., Phys. Rev. Lett. 52, 902.

    Google Scholar 

  27. Plambeck, R.L. and Wright, M.C.H. 1988, Ap. J.(Letters), submitted.

    Google Scholar 

  28. Sargent, A.I. and Beckwith, S. 1986, Ap. J. 323, 294.

    Google Scholar 

  29. Mundy, L.G., Wilking, B.A., and Myers, S. 1986, Ap. J.(Letters) 311, L75–L79.

    Google Scholar 

  30. Prinn, R.G. and Fegley, B. 1988, Origin and Evolution of Atmospheres, University of Arizona Press, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Robert L. Dickman Ronald L. Snell Judith S. Young

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this paper

Cite this paper

Blake, G.A. (1988). Chemistry in dense molecular clouds: Theory and observational constraints. In: Dickman, R.L., Snell, R.L., Young, J.S. (eds) Molecular Clouds in the Milky Way and External Galaxies. Lecture Notes in Physics, vol 315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-50438-9_252

Download citation

  • DOI: https://doi.org/10.1007/3-540-50438-9_252

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50438-2

  • Online ISBN: 978-3-540-46003-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics