Elementary set operations with d-dimensional polyhedra

  • H. Bieri
  • W. Nef
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 333)

Keywords

Primitive Operation Sign Tuple 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. [1]
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data structures and algorithms. Reading: Addison-Wesley 1983.Google Scholar
  2. [2]
    Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. C-28, 643–647 (1979).Google Scholar
  3. [3]
    Bieri, H.: Eine Charakterisierung der Polyeder. Elemente Math. 35, 143–144 (1980).Google Scholar
  4. [4]
    Bieri, H., Nef, W.: A recursive sweep-plane algorithm, determining all cells of a finite division of Rd. Computing 28, 189–198 (1982).Google Scholar
  5. [5]
    Bieri, H., Nef, W.: A sweep-plane algorithm for computing the volume of polyhedra represented in Boolean form. Linear Algebra Appl. 52/53, 69–97 (1983).Google Scholar
  6. [6]
    Bieri, H., Nef, W.: A sweep-plane algorithm for computing the Euler-characteristic of polyhedra represented in Boolean form. Computing 34, 287–302 (1985).Google Scholar
  7. [7]
    Bieri, H.: Wechselwirkung zwischen der Computergrafik und der Theorie der Polyeder. Informatik-Fachberichte 126, 441–455. Berlin: Springer 1986.Google Scholar
  8. [8]
    Brüderlin, B.D.: Rule-based geometric modelling. Dissertation, ETH Zürich. Zürich: Verlag der Fachvereine 1988.Google Scholar
  9. [9]
    Bruggesser, H.: Ein Programmsystem für die graphische Darstellung von Polyedern. Dissertation, Universität Bern 1975.Google Scholar
  10. [10]
    Chazelle, B., Dobkin, D.P.: Intersection of convex objects in two and three dimensions. J.ACM 34, 1–27 (1987).Google Scholar
  11. [11]
    Edelsbrunner, H.: O'Rourke, J., Seidel, R.: Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15, 341–363 (1986).CrossRefGoogle Scholar
  12. [12]
    Edelsbrunner, H.: Algorithms in combinatorial geometry. Berlin: Springer 1987.Google Scholar
  13. [13]
    Hertel, S., Mäntylä, M., Mehlhorn, K., Nievergelt, J.: Space sweep solves intersection of convex polyhedra. Acta Informatica 21, 501–519 (1984).Google Scholar
  14. [14]
    Laidlaw, D.H., Trumbore, W.B., Hughes, J.F.: Constructive solid geometry for polyhedral objects. ACM SIGGRAPH'86 Proc., 161–170.Google Scholar
  15. [15]
    Maibach, B.: MATIP — Eine Benutzersprache und ein Interpreter für mathematische Anwendungen. Dissertation, Universität Bern 1982.Google Scholar
  16. [16]
    Mehlhorn, K., Simon, K.: Intersecting two polyhedra one of which is convex. Lecture Notes in Computer Science 199, 534–542. Berlin: Springer 1985.Google Scholar
  17. [17]
    Meier, A.: Methoden der grafischen und geometrischen Datenverarbeitung. Stuttgart: Teubner 1986.Google Scholar
  18. [18]
    Muller, D.E., Preparata, F.P.: Finding the intersection of two convex polyhedra. Theor. Comput. Sci. 7, 217–236 (1978).Google Scholar
  19. [19]
    Nef, W.: Beiträge zur Theorie der Polyeder, mit Anwendungen in der Computergraphik. Bern: Herbert Lang 1978.Google Scholar
  20. [20]
    Preparata, F.P., Shamos, M.I.: Computational geometry — An introduction. Berlin: Springer 1985.Google Scholar
  21. [21]
    Requicha, A.A.G.: Representations for rigid solids: Theory, methods, and systems. ACM Comput.Surv. 12, 437–464 (1980).Google Scholar
  22. [22]
    Schmidt, P.M.: Algorithm for constructing a sweep-plane which is in general position to a given point set. Manuskript, Friedrich-Schiller-Universität Jena 1987.Google Scholar
  23. [23]
    Shamos, M.I., Hoey, D.: Geometric intersection problems. 17th Annual IEEE Symp. Foundations of Comput Sci. 1976, 208–215.Google Scholar
  24. [24]
    Six, H.W., Wood, D.: Counting and reporting intersections of d-ranges. IEEE Trans. Comput. C-31, 181–187 (1982).Google Scholar
  25. [25]
    Vogel, V.: Mathematische Modelle für die Geometrieverarbeitung — mengentheoretisch-algebraische Grundlagen und ein (Fleisch, Haut)-Modell. Technische Universität Dresden, Sektion Mathematik, Nr. 07-07-84.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • H. Bieri
    • 1
  • W. Nef
    • 1
  1. 1.Institut für Informatik und angewandte MathematikUniversität BernBern

Personalised recommendations