An introduction to the theory of computational complexity

  • D. P. Bovet
  • P. L. Crescenzi
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 314)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. BLUM A machine independent theory of complexity of recursive functions, J.ACM 14:2, 322–336, 1967.Google Scholar
  2. [2]
    S.A. COOK The classification of problems which have fast parallel algorithms, Lecture Notes in Computer Science 158, Springer-Verlag, Berlin, 78–93, 1983.Google Scholar
  3. [3]
    M.R. GAREY and D.S. JOHNSON Computers and intractability: A guide to the theory of NP-completeness, Freeman, New York, NY, 1969.Google Scholar
  4. [4]
    L. M. GOLDSCHLAGER A universal interconnection pattern for parallel computers, J.ACM 29:3, 1073–1086, 1982.Google Scholar
  5. [5]
    J. HARTMANIS and R.E STEARNS On the computational complexity of algorithms, Trans Amer. Math. Soc. 117, 285–306, 1965.Google Scholar
  6. [6]
    M. LEE and Y. YESHA Separation and lower bounds for ROM and nondeterministic models of parallel computation, Information and Computation 73, 102–128, 1987.Google Scholar
  7. [7]
    Y. TAO, H. ZHIJUN and Y. RUIZHAO Performance evaluation of the inference structure in expert system, REASONING, 945–950,1987.Google Scholar
  8. [8]
    A.M. TURING On computable numbers, with applications to the Entscheidungs problem, Proc. London Math. Soc. (2) 42, 230–265, 1937.Google Scholar
  9. [9]
    A. URQUHART Hard examples for resolution, J.ACM 34:1, 209–219,1987.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • D. P. Bovet
    • 1
  • P. L. Crescenzi
    • 1
  1. 1.Dept. of MathematicsUniversity of Rome “La Sapienza”Italy

Personalised recommendations