Advertisement

An introduction to the theory of computational complexity

  • D. P. Bovet
  • P. L. Crescenzi
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 314)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. BLUM A machine independent theory of complexity of recursive functions, J.ACM 14:2, 322–336, 1967.Google Scholar
  2. [2]
    S.A. COOK The classification of problems which have fast parallel algorithms, Lecture Notes in Computer Science 158, Springer-Verlag, Berlin, 78–93, 1983.Google Scholar
  3. [3]
    M.R. GAREY and D.S. JOHNSON Computers and intractability: A guide to the theory of NP-completeness, Freeman, New York, NY, 1969.Google Scholar
  4. [4]
    L. M. GOLDSCHLAGER A universal interconnection pattern for parallel computers, J.ACM 29:3, 1073–1086, 1982.Google Scholar
  5. [5]
    J. HARTMANIS and R.E STEARNS On the computational complexity of algorithms, Trans Amer. Math. Soc. 117, 285–306, 1965.Google Scholar
  6. [6]
    M. LEE and Y. YESHA Separation and lower bounds for ROM and nondeterministic models of parallel computation, Information and Computation 73, 102–128, 1987.Google Scholar
  7. [7]
    Y. TAO, H. ZHIJUN and Y. RUIZHAO Performance evaluation of the inference structure in expert system, REASONING, 945–950,1987.Google Scholar
  8. [8]
    A.M. TURING On computable numbers, with applications to the Entscheidungs problem, Proc. London Math. Soc. (2) 42, 230–265, 1937.Google Scholar
  9. [9]
    A. URQUHART Hard examples for resolution, J.ACM 34:1, 209–219,1987.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • D. P. Bovet
    • 1
  • P. L. Crescenzi
    • 1
  1. 1.Dept. of MathematicsUniversity of Rome “La Sapienza”Italy

Personalised recommendations