Advertisement

Random walks, random surfaces, and complexity

  • Ph. de Forcrand
  • F. Koukiou
  • D. Petritis
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 314)

Keywords

Partition Function Critical Exponent Bosonic String Gyration Radius Random Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Aizenman, Commun. Math. Phys. 86, 1 (1982)Google Scholar
  2. [2]
    J. Ambjørn, B. Durhuus, J. Fröhlich, P. Orland, Nucl. Phys. B270[FS16], 457 (1986)Google Scholar
  3. [3]
    J. Ambjørn, Ph. de Forcrand, F. Koukiou, D. Petritis, Phys. Letts. B197, 548 (1987)Google Scholar
  4. [4]
    G. Baker, Jr., Phys. Rev. B15, 1552 (1975)Google Scholar
  5. [5]
    A. Berretti, A. D. Sokal, J. Stat. Phys. 40, 483 (1985)Google Scholar
  6. [6]
    A. Billoire, F. David, Nucl. Phys. B275[FS17], 617 (1986)Google Scholar
  7. [7]
    A. Bovier, J. Fröhlich, U. Glaus, Mathematical aspects of the physics of disordered systems Lecture 5 of the Course given by J. Fröhlich at Les Houches Summer School, in Critical Phenomena, Random Systems and Gauge theories, K. Osterwalder and R Stora, eds. North-Holland, Amsterdam (1986)Google Scholar
  8. [8]
    D. Brydges, T. Spencer, Commun. Math. Phys. 97, 125 (1985)Google Scholar
  9. [9]
    F. David, J. Jurkiewicz, A. Krzywicki, B. Petersson, Critical exponents in a model of dynamically triangulated random surfaces, Preprint LPTHE 8710Google Scholar
  10. [10]
    Ph. de Forcrand, F. Koukiou, D. Petritis, J. Stat. Phys. 45, 459 (1986)Google Scholar
  11. [11]
    Ph. de Forcrand, F. Koukiou, D. Petritis, Phys. Letts. B189, 341 (1987)Google Scholar
  12. [12]
    Ph. de Forcrand, F. Koukiou, D. Petritis,J.Stat. Phys. 49, 223 (1987)Google Scholar
  13. [13]
    Ph. de Forcrand, F. Koukiou, D. Petritis, Study of the Edwards random walk using Monte Carlo simulation, in preparation.Google Scholar
  14. [14]
    J. Mazur, Non-self-intersecting random walks in lattices with nearest neighbors interactions, in Stochastic processes in chemical Physics-Vol. XV, K. Shuler ed., Interscience, New York (1969)Google Scholar
  15. [15]
    G. F. Lawler, Duke Math. J. 47,655 (1980)Google Scholar
  16. [16]
    G. F. Lawler, Commun. Math. Phys. 86, 539 (1982)Google Scholar
  17. [17]
    G. F. Lawler, Commun. Math. Phys. 97, 583 (1985)Google Scholar
  18. [18]
    J. F. Le Gall, These d'État, Paris (1987)Google Scholar
  19. [19]
    P. G. de Gennes, Phys. Letts. 38A, 339 (1972)Google Scholar
  20. [20]
    L. Peliti, Riv. Nuovo Cim. 10(6), 1 (1987)Google Scholar
  21. [21]
    J. K. Percus, Combinatorial Methods, in Applied Mathematical Science, Vol. 4, Springer, New York (1971)Google Scholar
  22. [22]
    S. Redner, P. J. Reynolds, J. Phys. A: Math. Gen., 14,15 (1981)Google Scholar
  23. [23]
    G. Slade, Commun. Math. Phys. 110, 661 (1987)Google Scholar
  24. [24]
    A. D. Sokal, unpublished result.Google Scholar
  25. [25]
    K. Symanzik, Euclidean Field Theory, in Proceedings International School of Physics “Enrico Fermi”, Varenna Course XLV, R. Jost ed. (Academic Press, New York, 1969)Google Scholar
  26. [26]
    S. R. S. Varadhan, Appendix to the course given by S. Symanzik, op. cit. Google Scholar
  27. [27]
    M. J. Westwater, Commun. Math. Phys. 72, 131 (1980)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Ph. de Forcrand
    • 1
    • 2
  • F. Koukiou
    • 3
  • D. Petritis
    • 3
  1. 1.Cray ResearchMendota HeightsUSA
  2. 2.Physics Dept.University of MinnesotaMinneapolisUSA
  3. 3.Institut de Physique théoriqueUniversity de LausanneLausanne

Personalised recommendations