Advertisement

Hierarchical diffusion

  • Constantin P. Bachas
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 314)

Abstract

We review the solution and properties of the diffusion equation in a hierarchical or ultrametric space [1].

Keywords

Ultrametric Space Dynamic Exponent Genealogical Tree Initial Probability Distribution Range Hopping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.P.Bachas and B.A.Huberman, Phys.Rev.Lett. 57 (1986) 1965; J.Phys. A20 (1987) 4995.PubMedGoogle Scholar
  2. 2.
    P.G. de Gennes, Recherche 7 (1976) 919; S.Alexander and R.Orbach, J.Physique Lett. 43 (1982) L625; R.Rammal and G.Toulouse, ibid 44 (1983) L13.Google Scholar
  3. 3.
    Scale invariant ultradiffusion was introduced and studied before ref. [1], in different contexts and variations, by many authors: B.A.Huberman and M.Kerszberg, J.Phys. A18 (1985) L331; S.Teitel and E.Domany, Phys.Rev.Lett. 55 (1985) 2176 and 56 (1985) 1755; A.Maritan and A.L.Stella, ibid 56 (1986) 1754 and J.Phys. A19 (1986) L269; S.Grossman, F.Wegner and K.H.Hoffmann, J.Physique Lett. 46 (1985) L575; G.Paladin, M.Mezard and C.De Dominicis, ibid 46 (1985) L985; M.Schreckenberg, Z.Phys. B60 (1985) 483; A.T.Ogielski and D.L.Stein, Phys.Rev.Lett. 55 (1985) 1634; D.Kumar and S.R.Shenoy, Solid State Comm. 57 (1986) 927; A.Blumen, J.Klafter and G.Zumofen, J.Phys. A19 (1986) L77.Google Scholar
  4. 4.
    M.Mezard, G.Parisi, N.Sourlas, G.Toulouse and M.Virasoro, Phys.Rev.Lett. 52 (1984) 1156 and J.Physique 45 (1984) 843; for a review of ultrametricity see also R.Rammal, G.Toulouse and M.A.Virasoro, Rev.Mod.Phys. 58 (1986) 765 and references therein.Google Scholar
  5. 5.
    D.Sherrington and S.Kirkpatrick, Phys.Rev.Lett. 35 (1975) 1792.Google Scholar
  6. 6.
    B.A.Huberman and T.Hogg, Physica 22D (1986) 376; B.A.Huberman and H.A.Ceccatto, Xerox PARC preprint (1987).MathSciNetGoogle Scholar
  7. 7.
    C.P.Bachas and W.F.Wolff, J.Phys.A20 (1987) L39.Google Scholar
  8. 8.
    For a discussion of this issue see: R.G.Palmer, in Proceedings of the Heidelberg Colloquium on Glassy Dynamics and Optimization, eds. J.L.van Hemmen and I.Morgenstern, Springer Verlag 1986 and references therein, and also ref.[3].Google Scholar
  9. 9.
    H.Sompolinsky and A.Zippelius, Phys.Rev.Lett 47 (1981) 359 and Phys.Rev. B25 (1982) 6860Google Scholar
  10. 10.
    N.Parga, CERN-TH 4410 preprint (1986).Google Scholar
  11. 11.
    G.Paladin and A.Vulpiani, Anomalous Scaling Laws in Multifractal Objects, Physics Reports, to appear.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Constantin P. Bachas
    • 1
  1. 1.Stanford Linear Accelerator CenterStanford UniversityStanford

Personalised recommendations