Skip to main content

Binary homogeneous nucleation

  • Part 1 Formation and Characteristics of Atmospheric Aerosols
  • Conference paper
  • First Online:
Atmospheric Aerosols and Nucleation

Part of the book series: Lecture Notes in Physics ((LNP,volume 309))

Abstract

Binary homogeneous nucleation is the process by which two vapors can condense simultaneously to form a solution droplet. This process can be very efficient to remove appreciable amount of trace gases from the atmosphere through gas-to-particle conversion. In this article, we rapidly review the present state of the theory and we compare some experimental results to the theoretical predictions. Some possible atmospheric applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. H. Flood, Z. Phys. Chem.A170, 286 (1934).

    Google Scholar 

  2. K. Neumann and W. Wring, Z. Phys. Chem. A186, 203 (1940).

    Google Scholar 

  3. H. Reiss, J. Chem. Phys. 18, 840 (1950).

    Google Scholar 

  4. D. Stauffer, J. Aerosol Sci. 7, 319 (1976).

    Google Scholar 

  5. G. J. Doyle, J. Chem. Phys. 35, 795 (1961).

    Google Scholar 

  6. C. S. Kiang and D. Stauffer, Faraday Symp. Chem. Soc. 2, 26 (1973).

    Google Scholar 

  7. P. Mirabel and J. L. Katz, J. Chem. Phys, 60, 1138 (1974).

    Google Scholar 

  8. R. H. Heist and H. Reiss, J. Chem. Phys. 61, 573 (1974).

    Google Scholar 

  9. J. Shugard and H. Reiss, J. Chem. Phys. 65, 2827 (1976).

    Google Scholar 

  10. G. Wilemski, J. Chem. Phys. 62, 3763 (1975); 80, 1370 (1984).

    Google Scholar 

  11. P. Mirabel and J. L. Clavelin, J. Aerosol Sci. 2, 219 (1978).

    Google Scholar 

  12. R. G. Renninger, F. C. Hiller and R. C. Bone, J. Chem. Phys. 73, 1584 (1981).

    Google Scholar 

  13. P. Mirabel and H. Reiss, Langmuir 3, 228 (1987).

    Google Scholar 

  14. A. K. Ray, M. Chalam and L. K. Peters, J. Chem Phys. 85, 2161 (1986).

    Google Scholar 

  15. K. Takahashi, M. Kasahara and M. Itoh, J. Aerosol Sci. 6, 45 (1975).

    Google Scholar 

  16. M. Itoh, K. Takahashi and M. Kasahara, J. Aerosol Sci. 8, 183 (1977).

    Google Scholar 

  17. R. P. Turco, P. Hamill, O.B. Toon, R. G. Whitten and C. S. Kiang, J. Atmos. Sci. 36, 699 (1979).

    Google Scholar 

  18. O. B. Toon, R. P. Turco, P. Hamill, C. S. Kiang and R. C. Whitten, J. Atmos. Sci. 36, 718 (1979).

    Google Scholar 

  19. P. Middleton and C. S. Kiang, J. Aerosol Sci. 2, 359 (1978).

    Google Scholar 

  20. P. V. N. Nair, P. V. Joshi, U. C. Mishra and K. G. Vohra. J. Atmos. Sci. 40, 107 (1983).

    Google Scholar 

  21. H. Reiss, D. I. Margolese and F. J. Schelling, J. Colloid Interface Sic. 56, 511 (1976).

    Google Scholar 

  22. D. Boulaud, G. Madelaine and D. Vigla, J. Chem. Phys. 66, 4854 (1977).

    Google Scholar 

  23. P. Mirabel and J. L. Clavelin, J. Chem. Phys. 68, 5020 (1978).

    Google Scholar 

  24. C. Flageollet-Daniel, J. P. Gamier and P. Mirabel, J. Chem. Phys. 78, 2600 (1983).

    Google Scholar 

  25. P. Wegener and B. J. Wu, Faraday Discuss. Chem. Soc. 61 77 (1976).

    Google Scholar 

  26. R. A. Zahoransky, S. L. Wittig, Proceedings of the 13th Intérnational Symposium on Shock Tubes and Waves, Niagara Falls, 1981; SUNY Press, Albany, NY, 1982.

    Google Scholar 

  27. J. P. Garnier and P. Mirabel, Chem. Phys. Letters 97, 566 (1983).

    Google Scholar 

  28. J. P. Garnier and P. Mirabel, J. Chem. Phys. 77, 2035 (1982).

    Google Scholar 

  29. P. Mirabel and J. L. Katz, J. Chem. Phys. 67, 1697 (1977).

    Google Scholar 

  30. W. Studzinski, G. H. Spiegel and R. A. Zahoramsky, J Chem. Phys. 84, 4008 (1986).

    Google Scholar 

  31. The supersaturation Si of a component i is defined as Si = Pi/Pi sol where Pi is the actual pressure of i in the gas mixture and Pisol its equilibrium vapor pressure over a large solution having the composition of the critical nucleus. The activity aig of i in the gas phase is Pi/Pi o where Pi o is the equilibrium vapor pressure of pure i. Si and aig are related by aig/Si = aiℓ where aiℓ is the activity of i in the liquid phase.

    Google Scholar 

  32. C. Flageollet-Daniel, J. P. Garnier and P. Mirabel, J. Chem. Phys. 78 2600 (1983).

    Google Scholar 

  33. D. H. Rasmussen J. Chem. Phys. 5, 2272 (1986).

    Google Scholar 

  34. G. H. Spiegel, R. A. Zahoransky and S. Wittig, in Shock Waves and Shock Tubes, D. Bershader and R. Hanson Eds., Stanford University Press, (1986).

    Google Scholar 

  35. G. Wilemski, to be published in the J. Chem. Phys. 88, (1988).

    Google Scholar 

  36. A. T. Cocks and R. P. Fernando, Atmos. Environment 15, 1293 (1981).

    Google Scholar 

  37. P. J. Crutzen and F. Arnold, Nature 324, 651 (1986).

    Google Scholar 

  38. W. A. Hoppel, Atmos. Environment 21,2703 (1987).

    Google Scholar 

  39. A. Jaecker-Voirol, P. Mirabel and H. Reiss, J. Chem. Phys. 87, 4849 (1987).

    Google Scholar 

  40. A. Jaecker-Voirol and P. Mirabel, to be published in J. Phys. Chem. (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Paul E. Wagner Gabor Vali

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this paper

Cite this paper

Mirabel, P.J., Jaecker-Voirol, A. (1988). Binary homogeneous nucleation. In: Wagner, P.E., Vali, G. (eds) Atmospheric Aerosols and Nucleation. Lecture Notes in Physics, vol 309. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-50108-8_1004

Download citation

  • DOI: https://doi.org/10.1007/3-540-50108-8_1004

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50108-4

  • Online ISBN: 978-3-540-45924-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics