Skip to main content

Bioaffinity Based Immobilization of Enzymes

  • Chapter
  • First Online:
Book cover Thermal Biosensors, Bioactivity, Bioaffinitty

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 64))

Abstract

Procedures that utilize the affinities of biomolecules and ligands for the immobilization of enzymes are gaining increasing acceptance in the construction of sensitive enzyme-based analytical devices as well as for other applications. The strong affinity of polyclonal/monoclonal antibodies for specific enzymes and those of lectins for glycoenzymes bearing appropriate oligosaccharides have been generally employed for the purpose. Potential of affinity pairs like cellulose-cellulose binding domain bearing enzymes and immobilized metal ion-surface histidine bearing enzymes has also been recognised. The bioaffinity based immobilization procedures usually yield preparations exhibiting high catalytic activity and improved stability against denaturation. Bioaffinity based immobilizations are usually reversible facilitating the reuse of support matrix, orient the enzymes favourably and offer the possibility of enzyme immobilization directly from partially pure enzyme preparations or even cell lysates. Enzyme lacking innate ability to bind to various affinity supports can be made to bind to them by chemically or genetically linking the enzymes with appropriate polypeptides/domains like the cellulose binding domain, protein A, histidine-rich peptides, single chain antibodies, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Khmelnitsky YL, Levashov AV, Klyachko NL, Martinek K (1988) Enzyme Microb Technol 10:710

    Article  Google Scholar 

  2. Gupta MN (1992) Eur J Biochem 203:25

    Article  CAS  Google Scholar 

  3. Gianfreda L, Scarfi MR (1991) Mol Cell Biochem 100:97

    Article  CAS  Google Scholar 

  4. Gemeiner P, Rexova-Benkova L, Svec F, Norrlow O (1994) Natural and synthetic carriers suitable for immobilization of viable cells, active organalles and molecules. In: Veliky IA, McLean RJC (eds) Immobilized biosystems. Theory and practical applications. Blackie Academic and Professional Chapman and Hall, London p 1

    Google Scholar 

  5. Mattiasson B (1988) Methods Enzymol 137:647

    Article  CAS  Google Scholar 

  6. Gupta, MN, Mattiasson B (1992) Unique applications of immobilized proteins in bioanalytical systems. In: Suelter CH (ed) Bioanalytical applications of enzymes. Wiley 36:1

    Google Scholar 

  7. Parker CW (1976) Radioimmunoassay of Biologically active compounds. Prentice-Hall Englewood Clifts, New Jersey

    Google Scholar 

  8. Shoemaker H, Wall M, Zurawski V (1984)Biotech 84. Online Pinner England, p 405

    Google Scholar 

  9. Hubbard AL, Cohen ZA (1976) In: Muddy AH (ed) Biochemical analysis of membrane. Wiley New York, p 427

    Google Scholar 

  10. Green NM (1963) Biochem J 89:585

    CAS  Google Scholar 

  11. Lamet D, Isenman D, Sjodahl J, Sjoquist J, Pecht I ( 1978) Biochem Biophys Res Commun 85:608

    Article  Google Scholar 

  12. Vijayalakshmi MA (1989) Trends Biotechnol 7:71

    Article  CAS  Google Scholar 

  13. de Alwis WU, Hill BS, Meiklejohn BI, Wilson GS (1987) Anal Chem 59:2688

    Article  Google Scholar 

  14. Melchers F, Messer W (1970) Biochem Biophys Res Commun 40:570

    Article  CAS  Google Scholar 

  15. Sato PH, Waltton DM (1983) Arch Biochem Biophys 221:548

    Article  Google Scholar 

  16. Ikura K, Okumura K, Yoshikawa M, Sasaki R, Chiba H (1984) J Appl Biochem 6:222

    CAS  Google Scholar 

  17. Solomon B, Moav N, Pines G, Katchalski-Katzir E (1984) Mol Immunol 21:1

    Article  CAS  Google Scholar 

  18. Solomon B, Koppel R, Pines G, Katchalski-Katzir E (1986) Biotechnol Bioeng 28:1213

    Article  CAS  Google Scholar 

  19. Solomon B, Hollander Z, Koppel R, Katchalski-Katzir E (1987) Methods Enzymol 135:160

    Article  CAS  Google Scholar 

  20. de Alwis U, Wilson GS (1989) Talanta 112:249

    Google Scholar 

  21. Fusek M, Turkova J, Stovickova J, Franek F (1988) Biotechnol Lett 10:85

    Article  CAS  Google Scholar 

  22. Shami EY, Rothstein A, Ramjeesingh M (1989) Trends Biotechnol 7:186

    Article  CAS  Google Scholar 

  23. Ruoff P, Lillo C, Campbell WH (1989) Biochem Biophys Res Commun 161:496

    Article  CAS  Google Scholar 

  24. Shami EY, Ramjeesingh M, Rothstein A, Zywulko M (1991) Enzyme Microb Technol 13:424

    Article  CAS  Google Scholar 

  25. Solomon B, Koppel R, Schwartz F, Flemminger G (1990) J. Chromatogr 510:321

    Article  CAS  Google Scholar 

  26. Stovickova J, Franek F, Turkova J (1991) Biocatalysis 5:121

    Article  CAS  Google Scholar 

  27. Agnellini D, Pace M, Cenquanta S, Gardana C, Pietta PG, Mauri PL (1992) Biocatalysis 6:251

    Article  CAS  Google Scholar 

  28. Jafri F, Husain S, Saleemuddin M ( 1993) Biotechnol Appl Biochem 18:401

    CAS  Google Scholar 

  29. Jafri F, Husain S, Saleemuddin M (1995) Biotechnol Tech 9:117

    Article  CAS  Google Scholar 

  30. Jafri F, Saleemuddin M (1997) Biotechnol Bioeng 56:605

    Article  CAS  Google Scholar 

  31. Siemann M, Syldatk C, Wagner F (1994) Biotechnol Lett 16:349

    Article  CAS  Google Scholar 

  32. Suzuki T, Pelichova H, Cindader B (1996) J Immunol 103:1366.

    Google Scholar 

  33. Sada E, Katon S, Kiyokawa A, Kondo A (1988) Biotechnol Bioeng 31:635

    Article  CAS  Google Scholar 

  34. Arnon H, (1973) Immunochemistry of enzymes. In: Sela M (ed) The antigens volI. Academic Press, New York, p 88

    Google Scholar 

  35. Cinader B (1967) Antibodies to biologically active molecules. Pergamon Press, Oxford, p88

    Google Scholar 

  36. Zyk N, Citri N (1968) Biochim Biophys Acta 139:317

    Google Scholar 

  37. Michaeli JD, Pinto E, Benjamini, de Buren FP (1969) Immunochemistry 6:101

    Article  CAS  Google Scholar 

  38. Feinstein RN, Jaroslow BN, Howard JB, Faulhaber JT (1971) J Immunol 106:1316

    CAS  Google Scholar 

  39. Ben-Yosef Y, Geiger B, Arnon R (1975) Immunochemistry 12:221

    Article  Google Scholar 

  40. Lis H, Sharon N (1993) Eur J Biochem 218:1

    Article  CAS  Google Scholar 

  41. Feizi T, Childs RA (1990) Biochem J 245:1

    Google Scholar 

  42. Zopf DA, Tsai CM, Ginsburg V (1978) Arch Biochem Biophys 185:61

    Article  CAS  Google Scholar 

  43. Hansen RS, Beavo JA (1982) Proc Natl Acad Sci USA 79:2788

    Article  CAS  Google Scholar 

  44. Ernst-Cabrera K, Wilchek M (1988) Trends Anal Chem 7:58

    Article  CAS  Google Scholar 

  45. Guisan JM, Bastida A, Cuesta C, Fernandez-Lawfente R, Russel CM (1991) Biotechnol Bioeng 38:1144

    Article  CAS  Google Scholar 

  46. Iqbal J, Saleemuddin M (1983) Biotechnol Bioeng 13:641

    Google Scholar 

  47. Solomon B, Balas N (1991) Biotechnol ApplBiochem 14:202

    CAS  Google Scholar 

  48. Goding JM (1985) Monoclonal antibodies: principles and practices. Academic Press, New York, p 9

    Google Scholar 

  49. Capra JD, Edmundson AB (1977) Scientific Am 236:50

    Article  CAS  Google Scholar 

  50. Vokley J, Harris J (1984) Biochem J 217:535

    Google Scholar 

  51. Folkersen J, Tiesner B, Westergaard JG, Grudzinskas JG (1985) J Immun Methods 77:45

    Article  CAS  Google Scholar 

  52. Desai MA (1990) J Chem Tech Biotechnol 48:105

    CAS  Google Scholar 

  53. Jack GW, Black R, James K, Boyel JE, Micklein LR (1987) J Chem Tech Biotechnol 39:45

    CAS  Google Scholar 

  54. Bezin H, Melache JM ( 1986) J Immunol Methods 88:19

    Article  Google Scholar 

  55. Tan-Wilson AL, Reichin M, Noble RW (1978) Immunochemistry 13:921

    Article  Google Scholar 

  56. Stankus RP, Leslie GA (1976) J Immunol Methods 10:307

    Article  CAS  Google Scholar 

  57. Kristiansen Y (1978) In: Hoffmann-Ostenhof, O (ed) Matrix bound antigens and antibodies in affinity chromatography. Pergamon Press, p 191

    Google Scholar 

  58. Kohno H, Kanda S, Kanno T (1986) J Biol Chem 261:10744

    CAS  Google Scholar 

  59. Emomoto A, Kamata N, Nakamura K (1994) Biochem Biophys Res Commun 201:1008

    Article  Google Scholar 

  60. Husain Q, Iqbal J, Saleemuddin M (1985) Biotechnol Bioeng 27:1102

    Article  CAS  Google Scholar 

  61. Kokufuta E, Yamaya Y, Shimada A, Nakamura I (1988) Biotechnol Lett 10:301

    Article  CAS  Google Scholar 

  62. Cuatrecasas P, Wilchek M, Ainfinsen CB (1968) Proc Natl Acad Sci USA 61:636

    Article  CAS  Google Scholar 

  63. Campbell DL, Weliky N (1967) In: Willams CA, Chase MW (eds) Methods in Immunology and Immunochemistry. Academic Press, New York, p 365

    Google Scholar 

  64. Silman TH, Katchalski E (1986) Ann Rev Biochem 35:873

    Article  Google Scholar 

  65. Ehle H, Horn A (1990) Biosepration 1:97

    CAS  Google Scholar 

  66. Kondo A, Yamaski R, Higashitani K (1992) J Ferment Bioeng 74:226

    Article  CAS  Google Scholar 

  67. Kondo A, Kaneko T, Higashitani K (1994) Biotechnol Bioeng 44:1

    Article  CAS  Google Scholar 

  68. Wang P, Hill TG, Wartchnow CA, Hnston ME, Oechler LM, Smith MB, Bednarski MD, Callstrom MR (1992) J Am Chem Soc 114:378

    Article  CAS  Google Scholar 

  69. Youings A, Chang SC, Dwek RA, Scragg IG (1996) J Biol Chem 314:621

    Google Scholar 

  70. Quash G, Roch AM, Nivelean, Grange J, Kevlouangkhot T, Huppert J (1978) J Immunol Meth 22:165

    Article  CAS  Google Scholar 

  71. Prisyazhnoy VS, Fusek M and Alkhov B (1988) J Chromatogr 424:243

    Article  CAS  Google Scholar 

  72. Hoffman WL, O’Shannessy DJ (1988) J Immunol Meth 112:113

    Article  CAS  Google Scholar 

  73. Little MC, Siebert CJ, Matson RS (1988) Biochromatogr 3:156

    CAS  Google Scholar 

  74. Fleminger G, Hadas E, Wolf T, Soloman B (1990) Appl Biochem Biotechnol 23:123

    Article  CAS  Google Scholar 

  75. Brizgys MV, Pincus SH, Rollins DE (1988) Biotechnol Appl Biochem 10:373

    CAS  Google Scholar 

  76. Zemek J, Kuniak P, Gemeiner J, Zamocky J, Kucar S (1982) Enzyme Microb Technol 4:233

    Article  CAS  Google Scholar 

  77. Wormald MR, Rudd PM, Harvey DJ, Chang SC, Scragg IG, Dwek RA (1997) Biochemistry 36:1370

    Article  CAS  Google Scholar 

  78. Schneider C, Newman RA, Sulkerland DR, Asser V, Greaves MF (1982) J Biol Chem 257:10766

    CAS  Google Scholar 

  79. Solomon B, Koppel R, Katchalski-Katzir E (1984) Bio/Technology August: 709

    Google Scholar 

  80. Hale JE, Beidler DE (1994) Anal Biochem 222:29

    Article  CAS  Google Scholar 

  81. Hale JE (1995) Anal Biochem 231:46

    Article  CAS  Google Scholar 

  82. de Alwis U, Wilson GS (1987) Anal Chem 59:2786

    Article  Google Scholar 

  83. de Alwis WU, Wilson GS (1985) Anal Chem 57:2754

    Article  Google Scholar 

  84. Janatova J, Gobel RJ (1984) Biochem J 221:113

    CAS  Google Scholar 

  85. Kondo A, Kishimura M, Katoh S, Sada E (1989) Biotechnol Bioeng 34:532

    Article  CAS  Google Scholar 

  86. Scheriff S, Silverton EW, Padlan EA, Cohen GH, Smith-Gill SJ, Finzel BC, Davies DR (1987) Proc Natl Acad Sci USA 84:8075

    Article  Google Scholar 

  87. Jones S, Thornton JM (1996) Proc Natl Acad Sci USA 93:13

    Article  CAS  Google Scholar 

  88. Davies DR, Sheriff S, Pardon EA (1988) J Biol Chem 263:10541

    CAS  Google Scholar 

  89. Rees AR, Roberts S, Webster D, Cheetam JC (1988) In: Brew K, Ahmad F, Baily H et al. (eds) ICSU Short reports V8, IRL Press, p 172

    Google Scholar 

  90. Tanford C (1990) Adv Protein Chem 24:1

    Article  Google Scholar 

  91. Sadana A, Madgula A (1993) Biotechnol Prog 9:259

    Article  CAS  Google Scholar 

  92. Solomon B, Schwartz F (1995) J Mol Recog 8:72

    Article  CAS  Google Scholar 

  93. Carlson JD, Yarmush ML (1992) Bio/Technology 86

    Google Scholar 

  94. Katzav-Gozansky T, Hanan E, Solomon B (1996) Biotechnol Appl Biochem 23:227

    CAS  Google Scholar 

  95. Daniel RM, Cowan DR, Morgan HW, Curran MP (1982) Biochem J 207:641

    CAS  Google Scholar 

  96. Reslow M, Adlercreutz P, Mattiasson B (1988) Eur J Biochem 172:573

    Article  CAS  Google Scholar 

  97. Whetze E, Adlercreutz P, Mattiasson B (1992) In: Velmine TJ, Beeflink MH, Von-Stokar V (eds) Biocalalysis in non-conventional media (Progress in Biotechnology V 8), p 372

    Google Scholar 

  98. Russel AJ, Trudel LJ, Skipper PL, Groopman JD, Tannenbaum SR, Klibanov AM (1989) Biochem Biophys Res Commun 158:80

    Article  Google Scholar 

  99. Wang P, Hill TG, Wartchow CA, Huston ME, Oehler LM, Smith MB, Bednarski MD, Call-storm MR (1992) J Am Chem Soc 114:378

    Article  CAS  Google Scholar 

  100. Janda KD, Ashley JA, Jones TM, MeLeod DA, Schloeder DM, Weinhouse MI (1990) J Am Chem Soc 112:8886

    Article  CAS  Google Scholar 

  101. Arbige MV, Pitcher WH (1989) Trends Biotechnol 7:330

    Article  CAS  Google Scholar 

  102. Sharon N (1993) Trends Biochem Sci 18:221

    Article  CAS  Google Scholar 

  103. Saleemuddin M, Husain Q (1991) Enzyme Microb Technol 13:290

    Article  CAS  Google Scholar 

  104. Goldstein IJ (1988) Studies on the combining sites of Concanavalin A. In: Chaudhury TK, Wiess AK (eds) Concanavalin A Plenum Press, New York, London, p 35

    Google Scholar 

  105. Goldstein IJ, Hollermann CE, Merrick JM (1965) Biochim Biophys Acta 97:68

    CAS  Google Scholar 

  106. Kobata A (1992) Eur J Biochem 209:483

    Article  CAS  Google Scholar 

  107. Ogata S, Muramatsu I, Kobata A (1975) J Biochem (Tokyo) 78:687.

    CAS  Google Scholar 

  108. Reeke GN, Jr, Becker JW, Cunninaham BA, Wang JL, Yahara I, Edelman GM (1975) Structure and function of Concanavalin A. In: Choudhury TK, Weiss AK (eds) Concanavalin A. Plenum Press, New York, London, p 43

    Google Scholar 

  109. Mandal DK, Brewer CF ( 1993) Biochemistry 32:5116

    Article  CAS  Google Scholar 

  110. Ahmad A, Bishayee S, Bacchawat BK (1973) Biochem Biophys Res Commun 53:730

    Article  CAS  Google Scholar 

  111. Husain Q, Saleemuddin M (1986) Enzyme Microb Technol 8:686

    Article  CAS  Google Scholar 

  112. Gunther GR, Wang JL, Yahara I, Cunniggham BA, Edelman GM (1973) Proc Natl Acad Sci USA 70:1012

    Article  CAS  Google Scholar 

  113. Fadda MB, Rescigno A, Rinaldi A, Sanjust E (1992) Biotechnol Appl Biochem 16:221

    CAS  Google Scholar 

  114. El Rassi Z, Truei Y, Maa Y-H, Horvath C (1988) Anal Biochem 169:1722

    Article  Google Scholar 

  115. Anspach FB, Altmann-Haase G (1994) Biotechnol Appl Biochem 20:323

    CAS  Google Scholar 

  116. Farooqi M, Saleemuddin M, Ulber R, Sosnitza P, Scheper T (1997) J Biotech 55:171

    Article  CAS  Google Scholar 

  117. Gemeiner P, Docolomansky P, Nahalka J, Stefuca V, Danielsson B (1996) Biotechnol Bioeng 49:26

    Article  CAS  Google Scholar 

  118. Vrabel P, Polakovic M, Godo S, Bales V, Docolomansky P, Gemeiner P (1997) Enzyme Microb Technol 21:196

    Article  CAS  Google Scholar 

  119. Montero MA, Remeu A (1993) Biochem Mol Biol Int 30:685

    CAS  Google Scholar 

  120. Hsiao H, Royer GP (1978) Arch Biochem Biophys 198:379

    Article  Google Scholar 

  121. Woodward J, Wiseman A (1978) Biochem Biophhys Acta 527:8

    CAS  Google Scholar 

  122. Ulbrich-Hofman R, Golbik R, Damerau W (1993) Fixation of the unfolding region-a hypothesis of enzyme stabilization. In: Vander Tweel WJJ, Harder A, Buitelaar RM (eds) Stability and stabilization of enzymes. Elsevier, p 497

    Google Scholar 

  123. Arnold U, Rucknagel KP, Shierhorn A, Ulbrich-Hofman R (1996) Eur J Biochem 237:862

    Article  CAS  Google Scholar 

  124. Goldstein IJ (1976) Carbohydrate binding specificity of concanavalin A. In: Bittiger H, Schnebli HP (eds) Concanavalin A as a tool. Wiley, New York, London, p 55

    Google Scholar 

  125. Mislovicova D, Vikartovska A, Gemeiner P (1997) J Biochem Biophys Methods 35:37

    Article  CAS  Google Scholar 

  126. Surolia A, Bishayee S, Ahmad A, Balasubramanian KA, Thambi-Dorai D, Poddar SK, Bacchawat BK (1975) Studies on the interaction of concanavalin A with glycoproteins. In: Chowdhuri TK, Weiss AK (eds) Concanavalin A. Plenum Press, New York, London, p 95

    Google Scholar 

  127. Mislovicova D, Chudinova M, Gemeiner P, Docolomansky P (1995) J Chromatogr B 664:145

    Article  CAS  Google Scholar 

  128. Mattiasson B, Borrebaeck C (1975) FEBS Lett 85:119

    Article  Google Scholar 

  129. Mattiasson B, Danielsson B (1982) Carbohydr Res 102:273

    Article  CAS  Google Scholar 

  130. Koneke R, Menzel C, Ulber R, Schiigerl K, Scheper T, Saleemuddin M (1996) Biosensors & Bioelectronics 11:1229

    Article  Google Scholar 

  131. Mattiasson B, Johansson PA (1982) J Immunol Methods 52:233

    Article  CAS  Google Scholar 

  132. Mattiasson B (1983) In: Immobilized cells and organalles. CRC Press Boca Raton, Florida, p95

    Google Scholar 

  133. Kaul R, D’Souza SF, Nadkarni GB (1986) J Microb Technol 1:12

    CAS  Google Scholar 

  134. Habibi-Rezaei M, Nemat-Gorgani M (1997) Appl Biochem Biotechnol 67:99

    Article  Google Scholar 

  135. Siddiqui S, Hasan S, Salahuddin A ( 1995) Arch Biochem Biophys 419:426

    Article  Google Scholar 

  136. Siddiqui S, Anwar A, Saleemuddin M. unpublished observations

    Google Scholar 

  137. Porath J, Olin B (1983) Biochemistry 22:1621

    Article  CAS  Google Scholar 

  138. Porath J (1988) Trends Anal Chem 7:254

    Article  CAS  Google Scholar 

  139. Porath J, Carlsson J, Olsson I, Belfrage G ( 1975) Nature (London) 258:598

    Article  CAS  Google Scholar 

  140. Arnold FH (1991) Bio/technology 9:151

    Article  CAS  Google Scholar 

  141. Sulkowski E (1989) Bio Essays 10:169

    Google Scholar 

  142. Sousa C, Cebolla A, de Lorenzo V (1996) Nature Biotechnology 14:1017

    Article  CAS  Google Scholar 

  143. Hemdan ES, Zhao Y-J, Sulkowski E, Porath J (1989) Proc Natl Acad Sci USA 86:1811

    Article  CAS  Google Scholar 

  144. Sundberg RJ, Martin RB (1974) Chem Rev 74:471

    Article  CAS  Google Scholar 

  145. Yip TT, Nakagawa Y, Porath J (1989) Anal Biochem 183:159

    Article  CAS  Google Scholar 

  146. Klapper MH (1977) Biochem Biophys Res Commun 78:1018

    Article  CAS  Google Scholar 

  147. Sulkowski E (1985) Trends Biotechnol 3:1

    Article  CAS  Google Scholar 

  148. Wong JM, Albright RL, Wang NHL (1991) Sep Purif Meth 20:49

    Article  CAS  Google Scholar 

  149. Ljungquist C, Breitholtz A, Brink-Nilsson H, Moks T, Uhlen M, Nilsson B (1989) Eur J Biochem 186:563

    Article  CAS  Google Scholar 

  150. Piesecki S, Teng W-Y, Hochuli E (1993) Biotechnol Bioeng 42:178

    Article  CAS  Google Scholar 

  151. Hochuli E, Dobeli H, Schacher A (1987) J Chromatogr 411:177

    Article  CAS  Google Scholar 

  152. Carlsson J, Mosbach K, Bulow L (1996) Biotechnol Bioeng 51:221

    Article  Google Scholar 

  153. Chaga C (1994) Biotechnol Appl Biochem 20:43

    CAS  Google Scholar 

  154. Coulet PR, Carlsson J, Porath J (1981) Biotechnol Bioeng 23:663

    Article  CAS  Google Scholar 

  155. Anspach FB, Altmann-Hasse G (1994) Biotechnol Appl Biochem 20:313

    CAS  Google Scholar 

  156. McKenzie GH, Sawer WH, Nichol LW (1972) Biochim Biophys Acta 263:283

    CAS  Google Scholar 

  157. Turkova J (1993) In: Bioaffinity Chromatography, J Chromatography Library, vol 55. Elsevier 55:644

    Google Scholar 

  158. Sholtissek S, Grosse F (1988) Gene 62:55

    Article  Google Scholar 

  159. di Guan C, Li P, Riggs PD, Inouye H (1988) Gene 67:21

    Article  Google Scholar 

  160. Langsford ML, Gilkes NR, Wakarchuk WW, Kilburn DG, Miller RC, Jr, Warren RAJ (1984) J Gen Microbiol 130:1367

    CAS  Google Scholar 

  161. Gilkes NR, Warren RAJ, Miller RS, Jr, Kilburn DG (1988) J Biol Chem 263:1040

    Google Scholar 

  162. Ong E, Gilkes NR, Warren RAJ, Miller RC, Jr, Kilburn DJ (1989) Bio/Technology 7:604

    Article  CAS  Google Scholar 

  163. Ong E, Gilkes NR, Miller RC, Jr, Warren RAJ, Kilburn DC (1991 ) Enzyme Microb Technol 13:59

    Article  CAS  Google Scholar 

  164. Phelps MR, Hobbs JB, Kilburn DJ, Turner RFB (1994) Biotechnol Progr 10:433

    Article  CAS  Google Scholar 

  165. Baneyx F, Schmidt C, Georgiou G (1990) Enzyme Microb Technol 12:337

    Article  CAS  Google Scholar 

  166. Newsted WJ, Ramjeesingh M, Zywulko M, Rothstein SJ, Shami EY (1995) Enzyme Microb Technol 17:757

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. K. Bhatia B. Danielsson P. Gemeiner S. Grabley F. Lammers A. Mukhopadhyay K. Ramanathan M. Saleemuddin T. Scheper V. Stefuca R. Thiericke B. Xie

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saleemuddin, M. (1999). Bioaffinity Based Immobilization of Enzymes. In: Bhatia, P.K., et al. Thermal Biosensors, Bioactivity, Bioaffinitty. Advances in Biochemical Engineering/Biotechnology, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49811-7_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-49811-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64967-0

  • Online ISBN: 978-3-540-49811-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics