Skip to main content

Thermal Biosensors in Biotechnology

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 64))

Abstract

The application of enzyme thermistor devices for the continuous monitoring of enzymatic processes is described. Different hardware concepts are presented and discussed, practical results are also given. These devices were used to analyze the enantiomeric excess in biotransformation processes and for thermal immunoanalysis. In addition, the biosensors were applied for the monitoring and control of an l-ornithine producing process and for the application in hemodialysis monitoring. A review section discusses the use of thermal biosensors for monitoring biotechnological processes in general.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akertek E, Tarhan L (1995) Characterization of immobilized catalases and their application in pasteurization of milk with H2O2. Appl Biochem Biotech 50: 291–303

    Article  CAS  Google Scholar 

  • Alonso A, Almendral MJ, Baez MD, Porras MJ, Alonso C (1995) Enzyme immobilization on an epoxy matrix. Determination of L-Arginine by flow-injection analysis. Anal Chim Acta 308:164–169

    Article  CAS  Google Scholar 

  • Amici AM, Minghetti A, Scotti T, Spalla C, Tognolli L (1967) Ergotamine production in submerged culture and physiology of Claviceps purpurea. Apll Microbiol 15: 597–602

    CAS  Google Scholar 

  • Bataillard P, Steffgen E, Haemmerli S, Manz A, Widmer HM (1993) An integrated silicon thermopile as biosensor for the thermal monitoring of glucose, urea and penicillin. Biosens Bioelect 8:89–98

    Article  CAS  Google Scholar 

  • Bergmeyer UH (1983) Methods of enzymatic analysis. 3. Auflage, VCH Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  • Birnbaum S, Bülow L, Hardy K, Danielsson B, Mosbach K (1986) Automated thermometric enzyme linked immunoassay of human proinsulin produced by Escherichia coli. Anal Biochem 158:12–19

    Article  CAS  Google Scholar 

  • Brandes W, Maschke HE, Scheper T (1993) Specific flow injection sandwich binding assay for IgG using protein A and a fusion protein. Anal Chem 65:3368–3371

    Article  CAS  Google Scholar 

  • Cannings LM, Carr PW (1975) Rapid thermochemical analysis via immobilized enzyme reactors. Anal Lett 8(5):359–367

    Google Scholar 

  • Danielsson (1995) personal communication. University of Lund, Sweden

    Google Scholar 

  • Danielsson B, Bülow L, Lowe CR, Satoh I, Mosbach K (1981b) Evalutaion of the enzyme thermistor as a specific detector for chromatographic procedures. Anal Biochem 117:84–93

    Article  CAS  Google Scholar 

  • Danielsson B, Mosbach K (1988) Enzyme thermistors. Meth Enzymol 137:181–197

    Article  CAS  Google Scholar 

  • Danielsson B, Mattiasson B, Mosbach K (1981a) Enzyme thermistor applications and their analytical applications. Appl Biochem Bioeng 3: pp 97–143

    CAS  Google Scholar 

  • Danielsson B, Mosbach K (1979) Determination of enzyme activities with the enzyme thermistor unit. FEBS Lett 101(1), pp 47–50

    Article  CAS  Google Scholar 

  • Danielsson B, Larsson PO (1990) Specific monitoring of chromatographic procedures. Trends Anal Chem 9:223

    Article  CAS  Google Scholar 

  • Danielsson B, Bülow L, Lowe CR, Satoh I, Mosbach K (1981b) Evalutaion of the enzyme thermistor as a specific detector for chromatograhic procedures. Anal Biochem 117: 84–93

    Article  CAS  Google Scholar 

  • Danielsson B (1994) Enzyme thermistors for food analysis. In: Wagner G, Guilbault GG (eds), Food biosensor analysis. Marcel Dekker, New York, Basel, Hong Kong, pp 173–190

    Google Scholar 

  • Docolomansky P, Gemeiner P, Mislovicova D, Stefuca V, Danielsson B (1994) Screening of con-canavalin A-bead cellulose conjugates using an enzyme thermistor with immobilized invertase as the reporter catalyst. Biotechn Bioeng 43:286–292

    Article  CAS  Google Scholar 

  • Fischer W (1989) Diploma-thesis. University of Hannover, Germany

    Google Scholar 

  • Flygar L, Larsson P.-O, Danielsson B (1990) Control of an affinity purification procedure using a thermal biosensor. Biotechnol Bioeng 36:723–726

    Article  Google Scholar 

  • Gemeiner P, Stefuca V, Welwardova A, Michalkova E, Welward L, Kurillova L, Danielsson B(1993) Direct determination of the cephalosporin transforming activity of immobilized cells with use of an enzyme thermistor. 1. Verification of the mathematical model. Enzyme Microb Technol 15:50–56

    Article  CAS  Google Scholar 

  • Gemeiner P, Stefuca V, Welwardova-Vikartovska A (1996) Screening and design of immobilized biocatalysts through the kinetic characterization by flow microcalorimetry. In: Wijfels RH, Buitelaar RM, Bucke C, Tramper J (eds) Immobilized Cells: Basics and Applications. Elsevier Science BV, Amsterdam, pp 320–327

    Google Scholar 

  • Grau C (1993), PhD-thesis, University of Hannover, Germany

    Google Scholar 

  • Guilbault GG, Danielsson B, Mandenius CF, Mosbach K (1983) A comparison of enzyme electrode and thermistor probes for assay of alcohols using alcohol oxidase. Anal Chem 55: pp 1582–1585

    Article  CAS  Google Scholar 

  • Hundeck (1988) diploma-thesis, University of Hannover, Germany

    Google Scholar 

  • Hundeck HG, Sauerbrei A, Hübner U, Scheper T, Schügerl K (1990) Four-channel enzyme thermistor system for process monitoring and control in biotechnology. Anal Chim Acta 238:211–222

    Article  CAS  Google Scholar 

  • Hundeck HG, Weiß M, Scheper T, Schubert F (1993) Calorimetric biosensor for the detection and determination of enantiomeric excesses in aqueous and organic phases. Biosens Bioelectron 8:205–208

    Article  CAS  Google Scholar 

  • Hundeck HG (1991) PhD-thesis, University of Hannover, Germany

    Google Scholar 

  • Hundeck HG, Hübner U, Lübbert A, Scheper T, Schmidt J, Weiß M, Schubert F (1992) Development and application of a four-channel enzyme thermistor system for bioprocess control. In: Scheller F, Schmid RD (eds), Biosensors: Fundamentals, Technologies and Applications. GBF-Monographs 17: 322–330

    Google Scholar 

  • Jeong YH, Wang SS (1995) Role of glutamine in hybridoma cell culture: effects on cell growth, antibody production, and cell metabolism. Enz Microb Techn 17:47–55

    Article  CAS  Google Scholar 

  • Kirstein D, Danielsson B, Scheller F, Mosbach K (1989) Highly sensitive enzyme thermistor determination of ADP and ATP by multiple recycling enzyme systems. Biosensors 4:231–239

    Article  CAS  Google Scholar 

  • Lammers F, Scheper T (1996) On-line monitoring of enzyme catalyzed biotransformations with biosensors. Enz Microb Techn, submitted

    Google Scholar 

  • Lammers F (1996) PhD-thesis, University of Hannover, Germany

    Google Scholar 

  • Mattiasson B, Rieke E, Munnecke D, Mosbach K (1979) Enzyme analysis of organophosphate insecticides using an enzyme thermistor. J Solid-Phase Biochem 4:263–270

    Article  CAS  Google Scholar 

  • Mattiasson B, Danielsson B, Hermansson C, Mosbach K (1977 b) Enzyme thermistor analysis of heavy metal ions with use of immobilized urease. FEBS Lett 85:203–206

    Article  Google Scholar 

  • Mattiasson B, Danielsson B (1982) Calorimetric analysis of sugars and sugar derivatives with aid of an enzyme thermistor. Carbohydr Res 102:273–283

    Article  CAS  Google Scholar 

  • Mattiasson B, Danielsson B, Winquist F, Nilsson H, Mosbach K (1981) Enzyme thermistor analysis of penicillin in standard solutions and fermentation broth. Appl Environm Microbiol 41(4):pp 903–908

    CAS  Google Scholar 

  • Mattiasson B, Mandenius CF, Axelson JP, Danielsson B, Hagander P (1983) Computer control of fermentations with biosensors. Ann NY Acad Sci 413:193–196

    Article  CAS  Google Scholar 

  • Mattiasson B, Borrebaeck C, Sanfridson B, Mosbach K (1977) Thermometric enzyme linked immunosorbent assay: TELISA. Biochim Biophys Acta 483: pp 221–227

    CAS  Google Scholar 

  • Mattiasson B, Mosbach K, Svensson A (1977a) Application of cyanide metabolizing enzymes to environmental control. Enzyme thermistor assay of cyanide using immobilized rhodanese and injectase. Biotech Bioeng 19:1643–1651

    Article  CAS  Google Scholar 

  • Mecklenburg M, Lindbladh C, Hongshan L, Mosbach K, Danielsson B (1993) Enzymatic amplification of a flow-injected thermometric enzyme-linked immunoassay for human insulin. Anal Biochem 212:388–393

    Article  CAS  Google Scholar 

  • Mosbach K, Danielsson B (1974) An enzyme thermistor. Biochim Biophys Acta 364:140–145

    CAS  Google Scholar 

  • Mosbach K, Danielsson B (1981) Thermal bioanalyzer in flow streams-enzyme thermistor devices. Anal Chem 53(1): 83A–84A, 86A, 89A-91A, 94A

    Article  CAS  Google Scholar 

  • Mosbach K (1991) Thermal biosensors. Biosens Bioelectr 6:179–182

    Article  Google Scholar 

  • Pschyrembel W (Hrsg) (1993) Klinisches Wörterbuch. de Gruyter Berlin, New York

    Google Scholar 

  • Rank M, Gram J, Stern-Nielsen K, Danielsson B (1995) On-line monitoring of ethanol, acetaldehyde and glycerol during industrial fermentations with Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:813–817

    Article  CAS  Google Scholar 

  • Rank M, Gram J, Danielsson B (1993) Industrial on-line monitoring of penicillin V, glucose and ethanol using a split-flow modified thermal biosensor. Anal Chim Acta 281:521–526

    Article  CAS  Google Scholar 

  • Saleemuddin M, Husain Q (1991) Concanavalin A: A useful ligand for glycoenzyme immobilization-a review. Enz Microb Technol 13:290–295

    Article  CAS  Google Scholar 

  • Satoh I, Danielsson B, Mosbach K (1981) Triglyceride determination with use of an enzyme thermistor. Anal Chim Acta 131: pp 255–262

    Article  CAS  Google Scholar 

  • Satoh I, Ishii T (1988) Flow-injection determination of inorganic pyrophosphate with use of an enzyme thermistor containing immobilized inorganic pyrophosphatase. Anal Chim Acta 214:409–413

    Article  CAS  Google Scholar 

  • Satoh I (1991a) An apoenzyme thermistor microanlysis for zinc(II) ions with use of an immobilized alkaline phosphatase reactor in a flow system. Biosens Bioelectr 6:375–379

    Article  CAS  Google Scholar 

  • Sauerbrei A (1988) PhD-thesis, University of Hannover, Germany

    Google Scholar 

  • Scheller F, Schubert F, (1989) Biosensoren. Birkhäuser Verlag Basel, Boston, Berlin

    Google Scholar 

  • Scheller F, Siegbahn N, Danielsson B, Mosbach K (1985) High sensitivity thermistor determination of l-lactate by substrate recycling. Anal Chem 57:1740–1743

    Article  CAS  Google Scholar 

  • Schmidt HL, Krisam G, Grenner G (1976) Microcalorimetric methods for substrate determinations in flow streams with immobilized enzymes. Biochim Biophys Acta 429:283–290

    CAS  Google Scholar 

  • Shimohigoshi M, Yokoyama K, Karube I (1995) Development of a bio-thermochip and its application for the detection of glucose in urine. Anal Chim Acta 303:295–299

    Article  CAS  Google Scholar 

  • Stefuca V, Gemeiner P, Kurillova L, Danielsson B, Bales V (1990) Application of the enzyme thermistor to the direct estimation of intrinsic kinetics using the saccharose-immobilized invertase system. Enzyme Microb Technol 12:830–835

    Article  CAS  Google Scholar 

  • Stefuca V, Welwardova A, Gemeiner P, Jakubova A (1994) Application of enzyme flow micro-calorimetry to the study of microkinetic properties of immobilized biocatalyst. Biotechnol Tech 8:497–502

    Article  CAS  Google Scholar 

  • Svensson A, Hynning PA, Mattiasson B (1979) Application of enzymatic processes for monitoring effluents. Measurements of primary amines using immobilized monoamine oxidase and the enzyme thermistor. J Appl Biochem 1:318–324

    Google Scholar 

  • Urban G, Kamper H, Jachimowicz A, Kohl F, Kuttner H, Olcaytuc F, Pittner F, Schalkhammer T, Mann-Buxbaum E (1991) The construction of microcalorimetric biosensors by use of high resolution thin-film thermistors. Biosens Bioelect 6:275–280

    Article  CAS  Google Scholar 

  • Winquist F, Danielsson B, Malpote J.-Y, Persson L, Larsson M-B (1985) Enzyme thermistor determination of oxalate with with immobilized oxalate oxidase. Anal Lett 18:573–588

    CAS  Google Scholar 

  • Xie B, Danielsson B, Norberg P, Winquist F, Lundström I (1992) Development of a thermal micro-biosensor fabricated on a silicon chip. Sens Act B 6:127–130

    Article  Google Scholar 

  • Xie B, Hedberg U, Mecklenburg M, Danielsson B (1993) Fast determination of whole blood glucose with a calorimetric micro-biosensor. Sens Act B 15-16, 141–144

    Article  Google Scholar 

  • Xie B, Mecklenburg M, Danielsson B, Öhmann O, Winquist F (1994) Microbiosensor based on an integrated thermopile. Anal Chim Acta 299:165–170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. K. Bhatia B. Danielsson P. Gemeiner S. Grabley F. Lammers A. Mukhopadhyay K. Ramanathan M. Saleemuddin T. Scheper V. Stefuca R. Thiericke B. Xie

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lammers, F., Scheper, T. (1999). Thermal Biosensors in Biotechnology. In: Bhatia, P.K., et al. Thermal Biosensors, Bioactivity, Bioaffinitty. Advances in Biochemical Engineering/Biotechnology, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49811-7_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-49811-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64967-0

  • Online ISBN: 978-3-540-49811-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics