Advertisement

Macromolecular Motion at the Nanoscale of Enzymes Working on Polysaccharides

  • M. Sletmoen
  • G. S. Bræk
  • B.T. Stokke
Part of the Lecture Notes in Physics book series (LNP, volume 711)

Abstract

Polysaccharide modifying enzymes may utilise enzyme-substrate motion to generate specific sequence patterns in polymers (e.g. epimerisation), or to produce oligomers as a result of depolymerisation. Enzyme catalysed polymerisation of polysaccharides may also create motion of entire species (bacteria). The energy balance show the clear role of biochemically accessible energy in most of such examples, whereas in others, conformational changes associated with the mutual relocation of the enzyme relative to the polymer substrate is the most likely source. A comparison between the mechanism underlying the nanoscale motion of enzymes working on polysaccharides, with various known types of energy catalysing the motion is discussed.

Keywords

Sequence Pattern Processive Enzyme Juvenile Wood Molecular Machine Mica Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Nelson (2004). Biological Physics. New York: Freeman.Google Scholar
  2. 2.
    R.D. Vale (1999). Trends Genet, 15, pp. M38-M42CrossRefGoogle Scholar
  3. 3.
    R. Mallik and S.P. Gross (2004). Curr Biol, 14, pp. 971–982CrossRefGoogle Scholar
  4. 4.
    J.F. Robyt and D. French (1967). Arch Biochem Biophys, 122, pp. 8–16CrossRefGoogle Scholar
  5. 5.
    P.H. Von Hippel, F.R. Fairfleld, and M.K. Dolejsi (1994). Ann N Y Acad Sci, 726, pp. 118–131CrossRefADSGoogle Scholar
  6. 6.
    A. Kornberg and T.A. Baker (1992). DNA replication, 2nd edition. New York: W.H. Freeman.Google Scholar
  7. 7.
    S.P. Gilbert, M.R. Webb, M. Brune, and K.A. Johnson (1995). Nature, 373, pp. 671–676CrossRefADSGoogle Scholar
  8. 8.
    W.A. Breyer and B.W. Matthews (2001). Protein Sci, 10, pp. 1699–1711CrossRefGoogle Scholar
  9. 9.
    A.B. Boraston, D.N. Bolam, H.J. Gilbert, and G.J. Davies (2004). Biochem J, 382, pp. 769–781CrossRefGoogle Scholar
  10. 10.
    D.N. Bolam, A. Ciruela, S. McQueen-Mason, P. Simpson, M.P. Williamson, J.E. Rixon, A. Boraston, G.P. Hazlewood, and H.J. Gilbert (1998). Biochem J, 331, pp. 775–781Google Scholar
  11. 11.
    J. Sakon, D. Irwin, D.B. Wilson, and P.A. Karplus (1997). Nat Struct Biol, 4, pp. 810–818CrossRefGoogle Scholar
  12. 12.
    J. Rouvinen, T. Bergfors, T. Teeri, K.C. Knowles, and T.A. Jones (1990). Science, 249, pp. 380–386CrossRefADSGoogle Scholar
  13. 13.
    C. Divne, J. Stahlberg, T.T. Teeri, and T.A. Jones (1998). J Mol Biol, 275, pp. 309–325CrossRefGoogle Scholar
  14. 14.
    G. Parsiegla, C. Reverbel-Leroy, C. Tardif, J.P. Belaich, H. Driguez, and R. Haser (2000). Biochemistry, 39, pp. 11238–11246CrossRefGoogle Scholar
  15. 15.
    G. Davies and B. Henrissat (1995). Structure, 3, pp. 853–859CrossRefGoogle Scholar
  16. 16.
    Y. Okamoto, A. Inoue, K. Miyatake, K. Ogihara, Y. Shigemasa, and S. Minami (2003). Macromol Biosci, 3, pp. 587–590CrossRefGoogle Scholar
  17. 17.
    Y. Usami, S. Minami, Y. Okamoto, A. Matsuhashi, and Y. Shigemasa (1997). Carbohydr Polym, 32, pp. 115–122CrossRefGoogle Scholar
  18. 18.
    P. Vander, K.M. Vårum, A. Domard, N.E. El Gueddari, and B.M. Moerschbacher (1998). Plant Physiol, 118, pp. 1353–1359CrossRefGoogle Scholar
  19. 19.
    A. Sørbotten, S.J. Horn, V.G.H. Eijsink, and K.M. Vårum (2005). FEBS Lett, 272, pp. 538–549Google Scholar
  20. 20.
    D.M.F. van Aalten, B. Synstad, M.B. Brurberg, E. Hough, B.W. Riise, V.G.H. Eijsink, and R.K. Wierenga (2000). Proc Natl Acad Sci USA, 97, pp. 5842–5847CrossRefADSGoogle Scholar
  21. 21.
    G.J. Davies, K.S. Wilson, and B. Henrissat (1997). Biochem J, 321, pp. 557–559Google Scholar
  22. 22.
    I. Tews, A.C.T. van Scheltinga, A. Perrakis, K.S. Wilson, and B.W. Dijkstra (1997). J Am Chem Soc, 119, pp. 7954–7959CrossRefGoogle Scholar
  23. 23.
    D.M.F. van Aalten, D. Komander, B. Synstad, S. Gåseidnes, M.G. Peter, and V.G.H. Eijsink (2001). Proc Natl Acad Sci USA, 98, pp. 8979–8984CrossRefADSGoogle Scholar
  24. 24.
    P. Sikorski, B.T. Stokke, A. Sørbotten, K.M. Vårum, S.J. Horn, and V.G.H. Eijsink (2005). Biopolymers, 77, pp. 273–285CrossRefGoogle Scholar
  25. 25.
    K.M. Vårum, M.W. Anthonsen, H. Grasdalen, and O. Smidsrød (1991). Carbohydr Res, 211, pp. 17–23CrossRefGoogle Scholar
  26. 26.
    K.M. Vårum, M.W. Anthonsen, H. Grasdalen, and O. Smidsrød (1991). Carbohydr Res, 217, pp. 19–27CrossRefGoogle Scholar
  27. 27.
    S. Armand, S. Drouillard, M. Schulein, B. Henrissat, and H. Driguez (1997). J Biol Chem, 272, pp. 2709–2713CrossRefGoogle Scholar
  28. 28.
    A. Varrot, M. Schulein, and G.J. Davies (1999). Biochemistry, 38, pp. 8884–8891CrossRefGoogle Scholar
  29. 29.
    J.Y. Zou, G.J. Kleywegt, J. Ståhlberg, H. Driguez, W. Nerinck, M. Claeyssens, A. Koivula, T.T. Teerii, and T.A. Jones (1999). Structure Fold Des, 7, pp. 1035–1045CrossRefGoogle Scholar
  30. 30.
    D. Nurizzo, J.P. Turkenburg, S.M. Roberts, E.J. Dodson, E.J. Taylor, H.J. Gilbert, and G.J. Davies (2002). Nat Struct Biol, 9, pp. 665–668CrossRefGoogle Scholar
  31. 31.
    E.A. MacGregor, S. Janecek, and B. Svensson (2001). Biochimica et biophysica acta-Protein structure and molecular enzymology, 1546, pp. 1–20CrossRefGoogle Scholar
  32. 32.
    M. Qian, R. Haser, G. Buisson, E. DuCe, and F. Payan (1994). Biochemistry, 33, pp. 6284–6294CrossRefGoogle Scholar
  33. 33.
    M. Machius, L. Vertesy, R. Huber, and G. Wiegand (1996). J Mol Biol, 260, pp. 409–421CrossRefGoogle Scholar
  34. 34.
    S. Pages, H.C.M. Kester, J. Visser, and J.A.E. Benen (2001). J Biol Chem, 276, pp. 33652–33656CrossRefGoogle Scholar
  35. 35.
    G. van Pouderoyen, H.J. Snijder, J.A.E. Benen, and B.W. Dijkstra (2003). FEBS Lett, 554, pp. 462–466CrossRefGoogle Scholar
  36. 36.
    M. Höök, U. Lindahl, G. Bäckström, A. Malmström, and L.-Å. Fransson (1974). J Biol Chem, 249, pp. 3908–3915Google Scholar
  37. 37.
    B. Larsen and A. Haug (1971). Carbohydr Res, 20, pp. 225–232CrossRefGoogle Scholar
  38. 38.
    U. Lindahl, G. Bäckström, A. Malmström, and L.-Å. Fransson (1972). Biochem Biophys Res Commun, 46, pp. 985–991CrossRefGoogle Scholar
  39. 39.
    A. Malmström, L.Å. Fransson, M. Höök, and U. Lindahl (1975). J Biol Chem, 250, pp. 3419–3425Google Scholar
  40. 40.
    S. Valla, J.-P. Li, H. Ertesvåg, T. Barbeyron, and U. Lindahl (2001). Biochimie, 83, pp. 819–830CrossRefGoogle Scholar
  41. 41.
    S.T. Moe, K.I. Draget, G. Skjåk-Bræk, and O. Smidsrød (1995). Alginate. In “Food Polysaccharides and their applications”, A. Stephen, Ed., Marcel Dekker N.Y. Marcel Dekker N. 245–86.Google Scholar
  42. 42.
    K.I. Draget, B. Strand, M. Hartmann, S. Valla, O. Smidsrød, and G. Skjåk-Bræk (2000). Int J Biol Macromol, 27, pp. 117–122CrossRefGoogle Scholar
  43. 43.
    P. Gacesa (1987). FEBS Lett, 212, pp. 199–202CrossRefGoogle Scholar
  44. 44.
    D.S. Feingold and R. Bentley (1987). FEBS Lett, 223, pp. 207–211CrossRefGoogle Scholar
  45. 45.
    H. Ertesvåg, B. Doseth, B. Larsen, G. Skjåk-Bræk, and S. Valla (1994). J Bacteriol, 176, pp. 2846–2853Google Scholar
  46. 46.
    M. Hartmann, A.S. Duun, S. Markussen, H. Grasdalen, S. Valla, and G. Skjåk-Bræk (2002). Biochim Biophys Acta, 1570, pp. 104–112Google Scholar
  47. 47.
    M. Hartmann, O.B. Holm, G.A.B. Johansen, G. Skjåk-Bræk, and B.T. Stokke (2002). Biopolymers, 63, pp. 77–88CrossRefGoogle Scholar
  48. 48.
    M. Sletmoen, G. Skjåk-Bræk, and B.T. Stokke (2004). Biomacromolecules, 5, pp. 1288–1295CrossRefGoogle Scholar
  49. 49.
    C. Campa, S. Holtan, N. Nilsen, T.M. Bjerkan, B.T. Stokke, and G. Skjåk-Bræk (2004). Biochem J, 381, pp. 155–164CrossRefGoogle Scholar
  50. 50.
    C.A. Steginsky, J.M. Beale, H.G. Floss, and R.M. Mayer (1992). Carbohydr Res, 225, pp. 11–26CrossRefGoogle Scholar
  51. 51.
    H.J. Rozeboom, T.M. Bjerkan, K.H. Kalk, H. Ertesvåg, S. Holtan, F.L. Aachmann, S. Valla, and B.W. Dijkstra, in preparation.Google Scholar
  52. 52.
    T.M. Bjerkan, B.L. Lillehov, W.I. Strand, G. Skjåk-Bræk, S. Valla, and H. Ertesvåg (2004). Biochem J, 381, pp. 813–821CrossRefGoogle Scholar
  53. 53.
    S. Kimura, W. Laosinchai, T. Itoh, X. Cui, R.C. Linder, and R.M. Brown (1999). Plant Cell, 11, pp. 2075–2085CrossRefGoogle Scholar
  54. 54.
    P.A. Roelofsen (1958). Acta Bot Neerl, 7, pp. 77–89Google Scholar
  55. 55.
    I. Tsekos (1999). Journal of Phycology, 35, pp. 635–655CrossRefGoogle Scholar
  56. 56.
    B.M. Mulder and A.M.C. Emons (2001). J Math Biol, 42, pp. 261–289zbMATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    M. Dogterom, J.W.J. Kerssemakers, G. Romet-Lemonne, and M.E. Janson (2005). Curr Opin Cell Biol, 17, pp. 67–74CrossRefGoogle Scholar
  58. 58.
    A.M.C. Emons and B.M. Mulder (2000). Trends Plant Sci, 5, pp. 35–40CrossRefGoogle Scholar
  59. 59.
    C. Wymer and C. Lloyd (1996). Trends Plant Sci, 1, pp. 222–228Google Scholar
  60. 60.
    A.M.C. Emons (1986). Ultramicroscopy, 19, p. 87CrossRefGoogle Scholar
  61. 61.
    Y.H.P. Zhang and L.R. Lynd (2004). Biotechnol Bioeng, 88, pp. 797–824CrossRefGoogle Scholar
  62. 62.
    K. Kinbara and T. Aida (2005). Chem Rev, 105, pp. 1377–1400CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • M. Sletmoen
    • 1
  • G. S. Bræk
    • 2
  • B.T. Stokke
    • 1
  1. 1.Biophysics and Medical Technology, Department of PhysicsThe Norwegian University of Science and Technology, NTNUTrondheimNorway
  2. 2.Department of BiotechnologyThe Norwegian University of Science and Technology, NTNUTrondheimNorway

Personalised recommendations