Advertisement

Membrane Nanotubes

  • I. Derényi
  • G. Koster
  • M.M. van Duijn
  • A. Czövek
  • M. Dogterom
  • J. Prost
Part of the Lecture Notes in Physics book series (LNP, volume 711)

Abstract

There is a growing pool of evidence showing the biological importance of membrane nanotubes (with diameter of a few tens of nanometers and length upto tens of microns) in various intra- and intercellular transport processes. These ubiquitous structures are often formed from flat membranes by highly localized forces generated by either the pulling of motor proteins or the pushing of polymerizing cytoskeletal filaments. In this chapter we give an overview of the theory of membrane nanotubes, their biological relevance, and the most recent experiments designed for the study of their formation and dynamics. We also discuss the effect of membrane proteins or lipid composition on the shape of the tubes, and the effect of antagonistic motor proteins on tube formation.

Keywords

Free Energy Tube Formation Motor Protein Optical Tweezer Membrane Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Visscher, M. J. Schnitzer, S. M. Block (1999). Nature, 400, pp. 184–189ADSCrossRefGoogle Scholar
  2. 2.
    J. Howard. Mechanics of motor proteins and the cytoskeleton, (Sinauer Associates, Sunderland 2001)Google Scholar
  3. 3.
    K. Svoboda, C. F. Schmidt, B. J. Schnapp, S. M. Block (1993). Nature, 365, pp. 721–727ADSCrossRefGoogle Scholar
  4. 4.
    H. B. McDonald, L. S. B. Goldstein (1990). Cell, 61, pp. 991–1000CrossRefGoogle Scholar
  5. 5.
    W. Hua, J. Chung, J. Gelles (2002). Science, 295, pp. 844–848ADSCrossRefGoogle Scholar
  6. 6.
    C. L. Asbury, A. N. Fehr, S. M. Block (2003). Science, 302, pp. 2130–2134ADSCrossRefGoogle Scholar
  7. 7.
    R. D. Vale (2003). J. Cell Biol., 163, pp. 445–450CrossRefGoogle Scholar
  8. 8.
    A. Yildiz, M. Tomishige, R. D. Vale, P. R. Selvin (2004). Science, 303, pp. 676–678ADSCrossRefGoogle Scholar
  9. 9.
    R. D. Vale (2003). Cell, 112, pp. 467–480CrossRefGoogle Scholar
  10. 10.
    M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, C. F. Schmidt (1998). Biophys. J., 74, pp. 1074–1085ADSCrossRefGoogle Scholar
  11. 11.
    R. Chandra, E. D. Salmon, H. P. Erickson, A. Lockhart, S. A. Endow (1993). J. Biol. Chem., 268, pp. 9005–9013Google Scholar
  12. 12.
    J. Lane, V. Allan (1999). Mol. Biol. Cell, 10, pp. 1909–1922Google Scholar
  13. 13.
    M. Terasaki, L. B. Chen, K. Fujiwara (1986). J. Cell Biol., 103, pp. 1557–1568CrossRefGoogle Scholar
  14. 14.
    C. Lee, L. B. Chen (1988). Cell, 54, pp. 37–46CrossRefGoogle Scholar
  15. 15.
    C. M. Waterman-Storer, E. D. Salmon (1998). Curr. Biol., 8, pp. 798–806CrossRefGoogle Scholar
  16. 16.
    F. Feiguin, A. Ferreira, K. S. Kosik, A. Caceres (1994). J. Cell Biol., 127, pp. 1021–1039CrossRefGoogle Scholar
  17. 17.
    C. H. Lee, M. Ferguson, L. B. Chen (1989). J. Cell Biol., 109, pp. 2045–2055CrossRefGoogle Scholar
  18. 18.
    S. L. Dabora, M. P. Sheetz (1988). Cell, 54, pp. 27–35CrossRefGoogle Scholar
  19. 19.
    R. D. Vale, H. Hotani (1988). J. Cell Biol., 107, pp. 2233–2241CrossRefGoogle Scholar
  20. 20.
    V. Allan, R. D. Vale (1994). J. Cell Sci., 107, pp. 1885–1897Google Scholar
  21. 21.
    A. Upadhyaya, M. P. Sheetz (2004). Biophys. J., 86, pp. 2923–2928ADSCrossRefGoogle Scholar
  22. 22.
    H. H. Mollenhauer, D. J. Morré (1998). Histochem. Cell Biol., 109, pp. 533–543CrossRefGoogle Scholar
  23. 23.
    N. Sciaky, J. Presley, C. Smith, K. J. M. Zaal, N. Cole, J. E. Moreira, M. Terasaki, E. Siggia, J. Lippincott-Schwartz (1997). J. Cell Biol., 139, pp. 1137–1155CrossRefGoogle Scholar
  24. 24.
    J. Lippincott-Schwartz, E. Snapp, A. Kenworthy (2001). Nat. Rev. Mol. Cell Biol., 2, pp. 444–456CrossRefGoogle Scholar
  25. 25.
    E. V. Polishchuk, A. Di Pentima, A. Luini, R. S. Polischuk (2003). Mol. Biol. Cell, 14, pp. 4470–4485CrossRefGoogle Scholar
  26. 26.
    T. Kirchhausen (2000). Nat. Rev. Mol. Cell Biol., 1, pp. 187–198CrossRefGoogle Scholar
  27. 27.
    J. S. Bonifacino, B. S. Glick (2004). Cell, 116, pp. 153–166CrossRefGoogle Scholar
  28. 28.
    M. Dogterom, J. W. J. Kerssemakers, G. Romet-Lemonne, M. E. Janson (2005). Curr. Opin. Cell Biol., 17, pp. 67–74CrossRefGoogle Scholar
  29. 29.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology of the Cell, 4th edn (Garland Science, New York 2002)Google Scholar
  30. 30.
    H. Delanoë-Ayari, P. Lenz, J. Brevier, M.Weidenhaupt, M. Vallade, D. Gulino, J. F. Joanny, D. Riveline (2004). Phys. Rev. Lett., 93, pp. 108102ADSCrossRefGoogle Scholar
  31. 31.
    A. Rustom, R. Saffrich, I. Markovic, P. Walther, H.-H. Gerdes (2004). Science, 303, pp. 1007–1010ADSCrossRefGoogle Scholar
  32. 32.
    S. C. Watkins, R. D. Salter (2005). Immunity, 23, pp. 309–318CrossRefGoogle Scholar
  33. 33.
    B. Önfelt, S. Nedvetzki, K. Yanagi, D. M. Davis (2004). J. Immunol., 173, pp. 1511–1513Google Scholar
  34. 34.
    K. N. J. Burger (2000). Traffic, 1, pp. 605–613CrossRefGoogle Scholar
  35. 35.
    K. Farsad and P. De Camilli (2003). Curr. Opin. Cell Biol., 15, pp. 372–381CrossRefGoogle Scholar
  36. 36.
    R. M. Hochmuth, N. Mohandas, P. L. Blackshear (1973). Biophys. J., 13, pp. 747–762ADSCrossRefGoogle Scholar
  37. 37.
    R. E. Waugh (1982). Biophys. J., 38, pp. 29–37ADSCrossRefGoogle Scholar
  38. 38.
    O. Rossier, D. Cuvelier, N. Borghi, P. H. Puech, I. Derényi, A. Buguin, P. Nassoy, and F. Brochard-Wyart (2003). Langmuir, 19, pp. 575–584CrossRefGoogle Scholar
  39. 39.
    R. M. Hochmuth, H. C. Wiles, E. A. Evans, J. T. McCown (1982). Biophys. J., 39, pp. 83–89ADSCrossRefGoogle Scholar
  40. 40.
    R. E. Waugh, J. Song, S. Svetina, B. Zeks (1992). Biophys J., 61, pp. 974–982ADSCrossRefGoogle Scholar
  41. 41.
    E. Evans, A. Yeung (1994). Chem. Phys. Lipids, 73, pp. 39–56CrossRefGoogle Scholar
  42. 42.
    Z. Li, B. Anvari, M. Takashima, P. Brecht, J. H. Torres, W. E. Brownell (2002). Biophys. J., 82, pp. 1386–1395CrossRefGoogle Scholar
  43. 43.
    T. Roopa, G. V. Shivashankar (2003). Appl. Phys. Lett., 82, pp. 1631–1633ADSCrossRefGoogle Scholar
  44. 44.
    D. Raucher, M. P. Sheetz (1999). Biophys. J., 77, pp. 1992–2002CrossRefGoogle Scholar
  45. 45.
    V. Heinrich, R. E. Waugh (1996). Ann. Biomed. Eng., 24, pp. 595–605CrossRefGoogle Scholar
  46. 46.
    H. Hotani, T. Inaba, F. Nomura, S. Takeda, K. Takiguchi, T. J. Itoh, T. Umeda, A. Ishijima (2003). Biosystems, 71, pp. 93–100CrossRefGoogle Scholar
  47. 47.
    D. K. Fygenson, J. F. Marko, A. Libchaber (1997). Phys. Rev. Lett., 79, pp. 4497–4500ADSCrossRefGoogle Scholar
  48. 48.
    G. Koster, A. Cacciuto, I. Derényi, D. Frenkel, M. Dogterom (2005). Phys. Rev. Lett., 94, pp. 068101ADSCrossRefGoogle Scholar
  49. 49.
    A. Roux, G. Cappello, J. Cartaud, J. Prost, B. Goud, P. Bassereau (2002). Proc. Natl. Acad. Sci. USA, 99, pp. 5394–5399ADSCrossRefGoogle Scholar
  50. 50.
    C. Leduc, O. Campàs, K. B. Zeldovich, A. Roux, P. Jolimaitre, L. Bourel-Bonnet, B. Goud, J.-F. Joanny, P. Bassereau, J. Prost (2004). Proc. Natl. Acad. Sci. USA, 101, pp. 17096–17101ADSCrossRefGoogle Scholar
  51. 51.
    G. Koster, M. VanDuijn, B. Hofs, M. Dogterom (2003). Proc. Natl. Acad. Sci. USA, 100, pp. 15583–15588ADSCrossRefGoogle Scholar
  52. 52.
    J. Dai, M. P. Sheetz (1995). Biophys. J., 68, pp. 988–996ADSCrossRefGoogle Scholar
  53. 53.
    J. Dai, M. P. Sheetz (1999). Biophys. J., 77, pp. 3363–3370CrossRefGoogle Scholar
  54. 54.
    R. M. Hochmuth, J. Y. Shao, J. Dai, M. P. Sheetz (1996). Biophys. J., 70, pp. 358–369CrossRefGoogle Scholar
  55. 55.
    R. E. Waugh, R. G. Bauserman (1995). Ann. Biomed. Eng., 23, pp. 308–321CrossRefGoogle Scholar
  56. 56.
    M. P. Sheetz (2001). Nat. Rev. Mol. Cell Biol., 2, pp. 392–396CrossRefGoogle Scholar
  57. 57.
    E. Evans, H. Bowman, A. Leung, D. Needham, D. Tirrell (1996). Science, 273, pp. 933–935ADSCrossRefGoogle Scholar
  58. 58.
    A. Karlsson, R. Karlsson, M. Karlsson, A.-S. Cans, A. Strömberg, F. Ryttsén, O. Orwar (2001). Nature, 409, pp. 150–152ADSCrossRefGoogle Scholar
  59. 59.
    M. Karlsson, K. Sott, M. Davidson, A.-S. Cans, P. Linderholm, D. Chiu, and O. Orwar (2002). Proc. Natl. Acad. Sci. USA, 99, pp. 11573–11578ADSCrossRefGoogle Scholar
  60. 60.
    M. Karlsson, M. Davidson, R. Karlsson, A. Karlsson, J. Bergenholtz, Z. Konkoli, A. Jesorka, T. Lobovkina, J. Hurtig, M. Voinova, O. Orwar (2004). Ann. Rev. Phys. Chem., 55, pp. 613–649CrossRefADSGoogle Scholar
  61. 61.
    T. Lobovkina, P. Dommersnes, J.-F. Joanny, P. Bassereau, M. Karlsson, O. Orwar (2004). Proc. Natl. Acad. Sci. USA, 101, pp. 7949–7953ADSCrossRefGoogle Scholar
  62. 62.
    P. G. Dommersnes, O. Orwar, F. Brochard-Wyart, J. F. Joanny (2005). Europhys Lett., 70, pp. 271–277ADSCrossRefGoogle Scholar
  63. 63.
    I. Derényi, F. Jülicher, J. Prost (2002). Phys. Rev. Lett., 88, pp. 238101ADSCrossRefGoogle Scholar
  64. 64.
    D. Cuvelier, I. Derényi, P. Bassereau, P. Nassoy (2005). Biophys. J., 88, pp. 2714–2726CrossRefGoogle Scholar
  65. 65.
    U. Seifert, R. Lipowsky. Morphology of Vesicles. In: Structure and Dynamics of Membranes, vol 1A, ed by R. Lipowsky, E. Sackmann (Elsevier Science, Amsterdam 1995) pp. 403–462CrossRefGoogle Scholar
  66. 66.
    U. Seifert (1997). Adv. Phys., 46, pp. 13–137ADSCrossRefGoogle Scholar
  67. 67.
    W. Helfrich (1973). Z. Naturforsch. C, 28, pp. 693–703Google Scholar
  68. 68.
    P. B. Canham (1970). J. Theor. Biol., 26, pp. 61–81CrossRefGoogle Scholar
  69. 69.
    L. Miao, U. Seifert, M. Wortis, H. G. Dobereiner (1994). Phys. Rev. E, 49, pp. 5389–5407ADSCrossRefGoogle Scholar
  70. 70.
    V. Heinrich, B. Bozic, S. Svetina, B. Zeks (1999). Biophys. J., 76, pp. 2056–2071CrossRefGoogle Scholar
  71. 71.
    H. G. Döbereiner, E. Evans, M. Kraus, U. Seifert, M. Wortis (1997). Phys. Rev. E, 55, pp. 4458–4474ADSCrossRefGoogle Scholar
  72. 72.
    D. J. Bukman, J. H. Yao, M. Wortis (1996). Phys. Rev. E, 54, pp. 5463–5468ADSCrossRefGoogle Scholar
  73. 73.
    T. R. Powers, G. Huber, R. E. Goldstein (2002). Phys. Rev. E, 65, pp. 041901ADSCrossRefGoogle Scholar
  74. 74.
    S. Leibler (1986). J. Phys., 47, pp. 507–516Google Scholar
  75. 75.
    S. Leibler, D. Andelman (1987). J. Phys., 48, pp. 2013–2018Google Scholar
  76. 76.
    T. Taniguchi, K. Kawasaki, D. Andelman, T. Kawakatsu (1994). J. Phys. II, 4, pp. 1333–1362CrossRefGoogle Scholar
  77. 77.
    M. Seul, D. Andelman (1995). Science, 267, pp. 476–483ADSCrossRefGoogle Scholar
  78. 78.
    J. B. Fournier (1996). Phys. Rev. Lett., 76, pp. 4436–4439ADSCrossRefGoogle Scholar
  79. 79.
    S. Komura, H. Shirotori, P. D. Olmsted, D. Andelman (2004). Europhys. Lett., 67, pp. 321–327ADSCrossRefGoogle Scholar
  80. 80.
    C.-M. Chen, P. G. Higgs, F. C. MacKintosh (1997). Phys. Rev. Lett., 79, pp. 1579–1582ADSCrossRefGoogle Scholar
  81. 81.
    F. Julicher, R. Lipowsky (1996). Phys. Rev. E, 53, pp. 2670–2683ADSCrossRefGoogle Scholar
  82. 82.
    T. Kawakatsu, D. Andelman, K. Kawasaki, T. Taniguchi (1993). J. Phys. II, 3, pp. 971–997CrossRefGoogle Scholar
  83. 83.
    J.-M. Allain, C. Storm, A. Roux, M. Ben Amar, J.-F. Joanny (2004). Phys. Rev. Lett., 93, p. 158104ADSCrossRefGoogle Scholar
  84. 84.
    V. Kralj-Iglic, A. Iglic, M. Bobrowska-Hagerstrand, H. Hagerstrand (2001). Colloids Surf. A, 179, pp. 57–64CrossRefGoogle Scholar
  85. 85.
    I. Tsafrir, D. Sagi, T. Arzi, M.-A. Guedeau-Boudeville, V. Frette, D. Kandel, J. Stavans (2001). Phys. Rev. Lett., 86, pp. 1138–1141ADSCrossRefGoogle Scholar
  86. 86.
    I. Tsafrir, Y. Caspi, M.-A. Guedeau-Boudeville, T. Arzi, J. Stavans (2003). Phys. Rev. Lett., 91, p. 138102ADSCrossRefGoogle Scholar
  87. 87.
    B. J. Peter, H. M. Kent, I. G. Mills, Y. Vallis, P. J. G. Butler, P. R. Evans, H. T. McMahon (2004). Science, 303, pp. 495–499ADSCrossRefGoogle Scholar
  88. 88.
    S. Ramaswamy, J. Toner, J. Prost (2000). Phys. Rev. Lett., 84, pp. 3494–3497ADSCrossRefGoogle Scholar
  89. 89.
    P. Girard, J. Prost, P. Bassereau (2005). Phys. Rev. Lett., 94, pp. 088102ADSCrossRefGoogle Scholar
  90. 90.
    I. Derényi, A. Czövek, F. Jülicher, J. Prost: (to be published)Google Scholar
  91. 91.
    H. J. Deuling, W. Helfrich (1977). Blood Cells, 3, pp. 713–720Google Scholar
  92. 92.
    B. Bozic, V. Heinrich, S. Svetina, B. Zeks (2001). Eur. Phys. J. E, 6, pp. 91–98CrossRefGoogle Scholar
  93. 93.
    F. Jülicher, U. Seifert (1994). Phys. Rev. E, 49, pp. 4728–4731ADSCrossRefGoogle Scholar
  94. 94.
    H. Jian-Guo, O.-Y. Zhong-Can (1993). Phys. Rev. E, 47, pp. 461–467ADSCrossRefGoogle Scholar
  95. 95.
    W.-M. Zheng, J. Liu (1993). Phys. Rev. E, 48, pp. 2856–2860ADSCrossRefGoogle Scholar
  96. 96.
    B. Bozic, S. Svetina, B. Zeks (1997). Phys. Rev. E, 55, pp. 5834–5842ADSCrossRefGoogle Scholar
  97. 97.
    R. E. Waugh, R. M. Hochmuth (1987). Biophys. J., 52, pp. 391–400CrossRefADSGoogle Scholar
  98. 98.
    L. Bo, R. E. Waugh (1989). Biophys. J., 55, pp. 509–517ADSCrossRefGoogle Scholar
  99. 99.
    R. Podgornik, S. Svetina, B. Zeks (1995). Phys. Rev. E, 51, pp. 544–547ADSCrossRefGoogle Scholar
  100. 100.
    T. Inaba, A. Ishijima, M. Honda, F. Nomura, K. Takiguchi, H. Hotani (2005). J. Mol. Biol., 348, pp. 325–333CrossRefGoogle Scholar
  101. 101.
    D. B. Hill, M. J. Plaza, K. Bonin, G. Holzwarth (2004). Eur. Biophys. J., 33, pp. 623–632CrossRefGoogle Scholar
  102. 102.
    V. J. Allan, H. M. Thompson, M. A. McNiven (2002). Nat. Cell Biol., 4, pp. E236–E242CrossRefGoogle Scholar
  103. 103.
    C. Kural, H. Kim, S. Syed, G. Goshima, V. I. Gelfand, P. R. Selvin (2005). Science, 308, pp. 1469–1472ADSCrossRefGoogle Scholar
  104. 104.
    S. P. Gross (2004). Physical Biology, 1, pp. 1–11ADSCrossRefGoogle Scholar
  105. 105.
    M. A. Welte (2004). Curr. Biol., 14, pp. 525–537CrossRefGoogle Scholar
  106. 106.
    C. Leduc (2005). Système biomimétique d’intermediaires de transport tubulaires: étude quantitative. PhD thesis, Université Paris 7, ParisGoogle Scholar
  107. 107.
    C. M. Coppin, D. W. Pierce, L. Hsu, R. D. Vale (1997). Proc. Natl. Acad. Sci. USA, 94, pp. 8539–8544ADSCrossRefGoogle Scholar
  108. 108.
    A. Parmegianni, F. Jülicher, L. Peliti, J. Prost (2001). Europhys. Lett., 56, pp. 603–609ADSCrossRefGoogle Scholar
  109. 109.
    T. Surrey, M. B. Elowitz, P.-E.Wolf, F. Yang, F. Nedelec, K. Shokat, S. Leibler (1998). Proc. Natl. Acad. Sci. USA, 95, pp. 4293–4298ADSCrossRefGoogle Scholar
  110. 110.
    G. Koster (2005). Membrane tube formation by motor proteins. PhD thesis, AMOLF, AmsterdamGoogle Scholar
  111. 111.
    E. Muto, H. Sakai, K. Kaseda (2005). J. Cell Biol., 168, pp. 691–696CrossRefGoogle Scholar
  112. 112.
    W. Roos, J. Ulmer, S. Grater, T. Surrey, J. P. Spatz (2005). Nano Lett., 5, pp. 2630–2634CrossRefADSGoogle Scholar
  113. 113.
    F. Jülicher, J. Prost (1995). Phys. Rev. Lett., 75, pp. 2618–2821ADSCrossRefGoogle Scholar
  114. 114.
    D. Riveline, A. Ott, F. Jülicher, A. Winkelmann, O. Cardoso, J. J. Lacapere, S. Magnusdottir, J. L. Viovy, L. Gorre-Talini, J. Prost (1998). Eur. Biophys. J., 27, pp. 403–408CrossRefGoogle Scholar
  115. 115.
    M. Badoual, F. Jülicher, J. Prost (2002). Proc. Natl. Acad. Sci. USA, 99, pp. 6696–6701ADSCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • I. Derényi
    • 1
  • G. Koster
    • 2
    • 3
  • M.M. van Duijn
    • 4
  • A. Czövek
    • 1
  • M. Dogterom
    • 3
  • J. Prost
    • 2
    • 5
  1. 1.Department of Biological PhysicsEötvös UniversityBudapestHungary
  2. 2.Institut Curie, UMR 168Paris Cédex 05France
  3. 3.FOM Institute for Atomic and Molecular Physics (AMOLF)AmsterdamThe Netherlands
  4. 4.Department of BioengineeringUniversity of California BerkeleyBerkeley
  5. 5.ESPCIParis Cédex 05France

Personalised recommendations