Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics

  • N. Hirokawa
  • R. Takemura
Part of the Lecture Notes in Physics book series (LNP, volume 711)


Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.


Brownian Movement Intracellular Transport Motor Domain Situs Inversus NR2B Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Hirokawa, R. Takemura (2005). Nat. Rev. Neurosci., 6, pp. 201–214CrossRefGoogle Scholar
  2. 2.
    N. Hirokawa (1982). J. Cell Biol., 94, pp. 129–142CrossRefGoogle Scholar
  3. 3.
    N. Hirokawa (1998). Science, 279, pp. 519–526CrossRefADSGoogle Scholar
  4. 4.
    N. Hirokawa, K.K. Pfister, H. Yorifuji, M.C. Wagner, S.T. Brady, G.S. Bloom (1989). Cell, 56, pp. 867–878CrossRefGoogle Scholar
  5. 5.
    N. Hirokawa (1996). Trends Cell Biol., 6, pp. 135–141CrossRefGoogle Scholar
  6. 6.
    H. Aizawa, Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku, N. Hirokawa (1992). J. Cell Biol., 119, pp. 1287–1296CrossRefGoogle Scholar
  7. 7.
    N. Hirokawa, R. Takemura (2004). Exp. Cell Res., 301, pp. 50–59CrossRefGoogle Scholar
  8. 8.
    N. Hirokawa, R. Sato-Yoshitake, N. Kobayashi, K.K. Pfister, G.S. Bloom, S.T. Brady (1991). J. Cell Biol., 114, pp. 295–302CrossRefGoogle Scholar
  9. 9.
    S. Kondo, R. Sato-Yoshitake, Y. Noda, H. Aizawa, T. Nakata, Y. Matsuura, N. Hirokawa (1994). J. Cell Biol., 125, pp. 1095–1107CrossRefGoogle Scholar
  10. 10.
    Y. Sekine, Y. Okada, Y. Noda, S. Kondo, H. Aizawa, R. Takemura, N. Hirokawa (1994). J. Cell Biol., 127, pp. 187–201CrossRefGoogle Scholar
  11. 11.
    M. Nangaku, R. Sato-Yoshitake, Y. Okada, Y. Noda, R. Takemura, H. Yamazaki, N. Hirokawa (1994). Cell, 79, pp. 1209–1220CrossRefGoogle Scholar
  12. 12.
    Y. Noda, R. Sato-Yoshitake, S. Kondo, M. Nangaku, N. Hirokawa (1995). J. Cell Biol., 129, pp. 157–167CrossRefGoogle Scholar
  13. 13.
    Y. Okada, H. Yamazaki, Y. Sekine-Aizawa, N. Hirokawa (1995). Cell, 81, pp. 769–780CrossRefGoogle Scholar
  14. 14.
    M. Kikkawa, E.P. Sablin, Y. Okada, H. Yajima, R.J. Fletterick, N. Hirokawa (2001). Nature, 411, pp. 439–445CrossRefADSGoogle Scholar
  15. 15.
    H. Yamazaki, T. Nakata, Y. Okada, N. Hirokawa (1995). J. Cell Biol., 130, pp. 1387–1399CrossRefGoogle Scholar
  16. 16.
    T. Nakata, N. Hirokawa (1995). J. Cell Biol., 131, pp. 1039–1053CrossRefGoogle Scholar
  17. 17.
    H. Yamazaki, T. Nakata, Y. Okada, N. Hirokawa (1996). Proc. Natl. Acad. Sci. U.S.A., 93, pp. 8443–8448CrossRefADSGoogle Scholar
  18. 18.
    N. Saito, Y. Okada, Y. Noda, Y. Kinoshita, S. Kondo, N. Hirokawa (1997). Neuron, 18, pp. 425–438CrossRefGoogle Scholar
  19. 19.
    T. Nakagawa, Y. Tanaka, E. Matsuoka, S. Kondo, Y. Okada, Y. Noda, Y. Kanai, N. Hirokawa (1997). Proc. Natl. Acad. Sci. U.S.A., 94, pp. 9654–9659CrossRefADSGoogle Scholar
  20. 20.
    Y. Yonekawa, A. Harada, Y. Okada, T. Funakoshi, Y. Kanai, Y. Takei, S. Terada, T. Noda, N. Hirokawa (1998). J. Cell Biol., 141, pp. 431–441CrossRefGoogle Scholar
  21. 21.
    Y. Tanaka, Y. Kanai, Y. Okada, S. Nonaka, S. Takeda, A. Harada, N. Hirokawa (1998). Cell, 93, pp. 1147–1158CrossRefGoogle Scholar
  22. 22.
    S. Nonaka, Y. Tanaka, Y. Okada, S. Takeda, A. Harada, Y. Kanai, M. Kido, N. Hirokawa (1998). Cell, 95, pp. 829–837CrossRefGoogle Scholar
  23. 23.
    Y. Okada, N. Hirokawa (1999). Science, 283, pp. 1152–1157CrossRefADSGoogle Scholar
  24. 24.
    S. Takeda, Y. Yonekawa, Y. Tanaka, Y. Okada, S. Nonaka, N. Hirokawa (1999). J. Cell Biol., 145, pp. 825–836CrossRefGoogle Scholar
  25. 25.
    M. Kikkawa, Y. Okada, N. Hirokawa (2000). Cell, 100, pp. 241–252CrossRefGoogle Scholar
  26. 26.
    S. Takeda, H. Yamazaki, D.H. Seog, Y. Kanai, S. Terada, N. Hirokawa (2000). J. Cell Biol., 148, pp. 1255–1265CrossRefGoogle Scholar
  27. 27.
    M. Setou, T. Nakagawa, D.H. Seog, N. Hirokawa (2000). Science, 288, pp. 1796–1802CrossRefADSGoogle Scholar
  28. 28.
    Y. Kanai, N. Dohmae, N. Hirokawa (2004). Neuron, 43, pp. 513–525CrossRefGoogle Scholar
  29. 29.
    S. Terada, M. Kinjo, N. Hirokawa (2000). Cell, 103, pp. 141–155CrossRefGoogle Scholar
  30. 30.
    T. Nakagawa, M. Setou, D. Seog, K. Ogasawara, N. Dohmae, K. Takio, N. Hirokawa (2000). Cell, 103, pp. 569–581CrossRefGoogle Scholar
  31. 31.
    C. Zhao, J. Takita, Y. Tanaka, M. Setou, T. Nakagawa, S. Takeda, H.W. Yang, S. Terada, T. Nakata, Y. Takei, M. Saito, S. Tsuji, Y. Hayashi, N. Hirokawa (2001). Cell, 105, pp. 587–597CrossRefGoogle Scholar
  32. 32.
    H. Miki, M. Setou, K. Kaneshiro, N. Hirokawa (2001). Proc. Natl. Acad. Sci. U.S.A., 98, pp. 7004–7011CrossRefADSGoogle Scholar
  33. 33.
    Y. Noda, Y. Okada, N. Saito, M. Setou, Y. Xu, Z. Zhang, N. Hirokawa (2001). J. Cell Biol., 155, pp. 77–88CrossRefGoogle Scholar
  34. 34.
    M. Setou, D.H. Seog, Y. Tanaka, Y. Kanai, Y. Takei, M. Kawagishi, N. Hirokawa (2002). Nature, 417, pp. 83–87CrossRefADSGoogle Scholar
  35. 35.
    Y. Xu, S. Takeda, T. Nakata, Y. Noda, Y. Tanaka, N. Hirokawa (2002). J. Cell Biol., 158, pp. 293–303CrossRefGoogle Scholar
  36. 36.
    R.W.-C. Wong, M. Setou, J. Teng, Y. Takei, N. Hirokawa (2002). Proc. Natl. Acad. Sci. U.S.A., 99, pp. 14500–14505CrossRefADSGoogle Scholar
  37. 37.
    B. Macho, S. Brancorsini, G.M. Fimia, M. Setou, N. Hirokawa, P. Sassone-Corsi (2002). Science, 298, pp. 2388–2390CrossRefADSGoogle Scholar
  38. 38.
    L. Guillaud, M. Setou, N. Hirokawa (2003). J. Neurosci., 23, pp. 131–140Google Scholar
  39. 39.
    N. Homma, Y. Takei, Y. Tanaka, T. Nakata, S. Terada, M. Kikkawa, Y. Noda, N. Hirokawa (2003). Cell, 114, pp. 229–239CrossRefGoogle Scholar
  40. 40.
    Y. Okada, H. Higuchi, N. Hirokawa (2003). Nature, 424, pp. 574–577CrossRefADSGoogle Scholar
  41. 41.
    T. Nakata, N. Hirokawa (2003). J. Cell Biol., 162, 1045–1055CrossRefGoogle Scholar
  42. 42.
    T. Ogawa, R. Nitta, Y. Okada, N. Hirokawa (2004). Cell, pp. 116, 591–602Google Scholar
  43. 43.
    R. Nitta, M. Kikkawa, Y. Okada, N. Hirokawa (2004). Science, 305, pp. 678–683CrossRefADSGoogle Scholar
  44. 44.
    Y. Kanai, Y. Okada, Y. Tanaka, A. Harada, S. Terada, N. Hirokawa (2000). J. Neurosci., 20, pp. 6374–6384Google Scholar
  45. 45.
    Y. Tanaka, N. Hirokawa (2002). Trends Genet., 18, pp. S39–44CrossRefGoogle Scholar
  46. 46.
    K. Jo, R. Derin, M. Li, D.S. Bredt (1999). J. Neurosci., 19, pp. 4189–4199Google Scholar
  47. 47.
    N. Hirokawa (2000). Traffic, 1, pp. 29–34CrossRefGoogle Scholar
  48. 48.
    N. Hirokawa, R. Takemura (2003). Trends Biochem. Sci., 28, pp. 558–565CrossRefGoogle Scholar
  49. 49.
    Y. Okada, S. Takeda, Y. Tanaka, J.-C.I. Belmonte, N. Hirokawa (2005). Cell, 121, pp. 633–644CrossRefGoogle Scholar
  50. 50.
    Y. Okada, S. Nonaka, Y. Tanaka, Y. Saijoh, H. Hamada, N. Hirokawa (1999). Mol. Cell, 4, pp. 459–468CrossRefGoogle Scholar
  51. 51.
    Y. Tanaka, Y. Okada, N. Hirokawa (2005). Nature, 435, pp. 172–177CrossRefADSGoogle Scholar
  52. 52.
    E.N. Meyers, G.R. Martin (1999). Science, 285, pp. 403–406CrossRefGoogle Scholar
  53. 53.
    J. McGrath, S. Somlo, S. Makova, X. Tian, M. Brueckner (2003). Cell, 114, pp. 61–73CrossRefGoogle Scholar
  54. 54.
    J. Teng, T. Rai, Y. Tanaka, Y. Takei, T. Nakata, M. Hirasawa, A.B. Kulkarni, N. Hirokawa (2005). Nat. Cell Biol., 7, pp. 474–482CrossRefGoogle Scholar
  55. 55.
    A. Yildiz, P.R. Selvin (2005). Trends Cell Biol., 15, pp. 112–120CrossRefGoogle Scholar
  56. 56.
    J. Howard, A.J. Hudspeth, R.D. Vale (1989). Nature, 342, pp. 154–158CrossRefADSGoogle Scholar
  57. 57.
    B.J. Schnapp, B. Crise, M.P. Sheetz, T.S. Reese, S. Khan (1990). Proc. Natl. Acad. Sci. U.S.A., 87, pp. 10053–10057CrossRefADSGoogle Scholar
  58. 58.
    R.D. Astumian (1997). Science, 276, pp. 917–922CrossRefGoogle Scholar
  59. 59.
    Y. Okada, N. Hirokawa (2000). Proc. Natl. Acad. Sci. U.S.A., 97, pp. 640–645CrossRefADSGoogle Scholar
  60. 60.
    S. Rice, A.W. Lin, D. Safer, C.L. Hart, N. Naber, B.O. Carragher, S.M. Cain, E. Pechatnikova, E.M. Wilson-Kubalek, M. Whittaker, E. Pate, R. Cooke, E.W. Taylor, R.A. Milligan, R.D. Vale (1999). Nature, 402, pp. 778–784CrossRefADSGoogle Scholar
  61. 61.
    A. Desai, T.J. Mitchison (1997). Annu. Rev. Cell Dev. Biol., 13, pp. 83–117CrossRefGoogle Scholar
  62. 62.
    A.W. Hunter, M. Caplow, D.L. Coy, W.O. Hancock, S. Diez, L. Wordeman, J. Howard (2003). Mol. Cell, 11, pp. 445–457CrossRefGoogle Scholar
  63. 63.
    R.D. Vale (2003). Cell, 112, pp. 467–480CrossRefGoogle Scholar
  64. 64.
    C.J. Lawrence, R.K. Dawe, K.R. Christie, D.W. Cleveland, S.A. Endow, L.S. Goldstein, H.V. Goodson, N. Hirokawa et al. (2004). J. Cell Biol., 167, pp. 19–22CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • N. Hirokawa
    • 1
  • R. Takemura
    • 2
  1. 1.Department of Cell Biology and AnatomyGraduate School of Medicine, University of TokyoTokyoJapan
  2. 2.Okinaka Memorial Institute for Medical ResearchTokyoJapan

Personalised recommendations