Advertisement

Axonal Transport: Imaging and Modeling of a Neuronal Process

  • S.B. Shah
  • G. Yang
  • G. Danuser
  • L.S.B. Goldstein
Part of the Lecture Notes in Physics book series (LNP, volume 711)

Abstract

Owing to their unusual geometry and polarity, neurons face a tremendous transport challenge. In particular, the bi-directional movement of many cargoes between cell body and synapse that takes place within extremely long, narrow axons requires motor-driven active transport along polarized microtubules. We summarize some imaging and theoretical modeling strategies recently developed to better understand axonal transport and neuronal function. Our approaches are motivated by three questions: (1) Can we predict the response of a complex trafficking system to perturbations of various components, either alone, or in combination? (2) What is the relationship between in vitro measurements of single motor properties and the movement of motor-cargo complexes in vivo? (3) What key principles govern the operation of the neuronal transport system? We discuss the imaging of vesicular transport in Drosophila melanogaster larval axons, and the development of quantitative schemes to define transport function via the extraction of kinematic parameters from these images. The application of these schemes to images from wild-type larvae and larvae expressing mutations in specific transport proteins allows rigorous quantification of transport kinematics in functional and dysfunctional neurons. Finally, we present some strategies and results for the theoretical modeling of axonal transport, and discuss the integration of these results with experimental data.

Keywords

Axonal Transport Macroscopic Model Squid Giant Axon Ventral Ganglion Individual Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.M. Coppin, J.T. Finer, J.A. Spudich, R.D. Vale (1996). Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc Natl Acad Sci USA, 93(5), pp. 1913–7.CrossRefADSGoogle Scholar
  2. 2.
    J. Howard, A.J. Hudspeth, R.D. Vale (1989). Movement of microtubules by single kinesin molecules. Nature, 342(6246), pp. 154–8.CrossRefADSGoogle Scholar
  3. 3.
    K. Kawaguchi, S. Ishiwata (2000). Temperature dependence of force, velocity, and processivity of single kinesin molecules. Biochem Biophys Res Commun, 272(4.3), pp. 895–9.CrossRefGoogle Scholar
  4. 4.
    S.C. Kuo, M.P. Sheetz (1993). Force of single kinesin molecules measured with optical tweezers. Science, 260(5105), pp. 232–4.CrossRefADSGoogle Scholar
  5. 5.
    R. Mallik, B.C. Carter, S.A. Lex, S.J. King, S.P. Gross (2004). Cytoplasmic dynein functions as a gear in response to load. Nature, 427(6975), pp. 649–52.CrossRefADSGoogle Scholar
  6. 6.
    R.D. Vale (1993). Measuring single protein motors at work. Science, 260(5105), pp. 169–70.CrossRefADSGoogle Scholar
  7. 7.
    R.D. Vale, F. Malik, D. Brown (1992). Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins. J Cell Biol, 119(6), pp. 1589–96.CrossRefGoogle Scholar
  8. 8.
    R.D. Allen, J. Metuzals, I. Tasaki, S.T. Brady, S.P. Gilbert (1982). Fast axonal transport in squid giant axon. Science, 218(4577), pp. 1127–9.CrossRefGoogle Scholar
  9. 9.
    L. Wang, A. Brown (2001). Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching. Mol Biol Cell, 12(10), pp. 3257–67.Google Scholar
  10. 10.
    S.T. Brady, R.J. Lasek, R.D. Allen (1982). Fast axonal transport in extruded axoplasm from squid giant axon. Science, 218(4577), pp. 1129–31.CrossRefADSGoogle Scholar
  11. 11.
    B.W. Guzik, L.S. Goldstein (2004). Microtubule-dependent transport in neurons: steps towards an understanding of regulation, function and dysfunction. Curr Opin Cell Biol, 16(4), pp. 443–50.CrossRefGoogle Scholar
  12. 12.
    N. Hirokawa, R. Takemura (2005). Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci, 6(4.3), pp. 201–14.CrossRefGoogle Scholar
  13. 13.
    V. Muresan (2000). One axon, many kinesins: What’s the logic? J Neurocytol, 29(11–12), pp. 799–818.CrossRefMathSciNetGoogle Scholar
  14. 14.
    A.B. Bowman, A. Kamal, B.W. Ritchings, A.V. Philp, M. McGrail, J.G. Gindhart, L.S Goldstein (2000). Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell, 103(4), pp. 583–94.CrossRefGoogle Scholar
  15. 15.
    K.J. Verhey, D. Meyer, R. Deehan, J. Blenis, B.J. Schnapp, T.A. Rapoport, B. Margolis (2001). Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol, 152(5), pp. 959–70.CrossRefGoogle Scholar
  16. 16.
    R. Cross, J. Scholey (1999). Kinesin: the tail unfolds. Nat Cell Biol, 1(5), pp. E119–2.CrossRefGoogle Scholar
  17. 17.
    D.D. Hackney, J.D. Levitt, J. Suhan (1992). Kinesin undergoes a 9 S to 6 S conformational transition. J Biol Chem, 267(12), pp. 8696–701.Google Scholar
  18. 18.
    S.J. King, T.A. Schroer (2000). Dynactin increases the processivity of the cytoplasmic dynein motor. Nat Cell Biol, 2(4.1), pp. 20–4.Google Scholar
  19. 19.
    A.W. Tai, J.Z. Chuang, C.H. Sung (2001). Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport. J Cell Biol, 153(7), pp. 1499–509.CrossRefGoogle Scholar
  20. 20.
    N. Hirokawa, R. Takemura (2003). Biochemical and molecular characterization of diseases linked to motor proteins. Trends Biochem Sci, 28(10), pp. 558–65.CrossRefGoogle Scholar
  21. 21.
    S. Roy, B. Zhang, V.M. Lee, J.Q. Trojanowski (2005). Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol (Berl), 109(4.1), pp. 5–13.CrossRefGoogle Scholar
  22. 22.
    S. Gunawardena, L.S. Goldstein (2004). Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J Neurobiol, 58(4.2), pp. 258–71.CrossRefGoogle Scholar
  23. 23.
    A.B. Cubitt R. Heim, S.R. Adams A.E. Boyd L.A. Gross R.Y. Tsien (1995). Understanding, improving and using green fluorescent proteins. Trends Biochem Sci, 20(11), pp. 448–55.CrossRefGoogle Scholar
  24. 24.
    M.M. Falk, U. Lauf (2001). High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP, and YFP to study the structural composition of gap junctions in living cells. Microsc Res Tech, 52(4.3), pp. 251–62.CrossRefGoogle Scholar
  25. 25.
    C. Kaether, P. Skehel, C.G. Dotti (2000). Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol Biol Cell, 11(4), pp. 1213–24.Google Scholar
  26. 26.
    A. Kamal, G.B. Stokin, Z. Yang, C.H. Xia, L.S. Goldstein (2000). Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron, 28(4.2), pp. 449–59.CrossRefGoogle Scholar
  27. 27.
    G.B. Stokin, C. Lillo, T.L. Falzone, R.G. Brusch, E. Rockenstein, S.L. Mount, R. Raman, P. Davies, E. Masliah, D.S. Williams, L.S. Goldstein (2005). Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science, 307(5713), pp. 1282–8.CrossRefADSGoogle Scholar
  28. 28.
    S. Gunawardena, L.S. Her, R.G. Brusch, R.A. Laymon, I.R. Niesman, B. Gordesky-Gold, L. Sintasath, N.M. Bonini, L.S. Goldstein (2003). Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron, 40(4.1), pp. 25–40.CrossRefGoogle Scholar
  29. 29.
    H.M. Zhou, I. Brust-Mascher J.M. Scholey (2001). Direct visualization of the movement of the monomeric axonal transport motor UNC-104 along neuronal processes in living Caenorhabditis elegans. J Neurosci, 21(11), pp. 3749–55.Google Scholar
  30. 30.
    G. Yang, A. Matov, G. Danuser (2005). Reliable Tracking of Large Scale Dense Antiparallel Particle Motion for Fluorescent Live Cell Imaging, in Proc. IEEE Workshop on Computer Vision Methods for Bioinformatics at CVPR., San Diego, CA, USA.Google Scholar
  31. 31.
    A. Ponti, P. Vallotton, W.C. Salmon, C.M. Waterman-Storer, G. Danuser (2003). Computational analysis of F-actin turnover in cortical actin meshworks using fluorescent speckle microscopy. Biophys J, 84(5), pp. 3336–52.CrossRefGoogle Scholar
  32. 32.
    J-C. Olivo-Marin (2002). Extraction of spots in biological images using multiscale products. Pattern Recognition, 35, pp. 1989–1996.zbMATHCrossRefGoogle Scholar
  33. 33.
    S.P. Gross, M.A. Welte, S.M. Block E.F. Wieschaus (2002). Coordination of opposite-polarity microtubule motors. J Cell Biol, 156(4), pp. 715–24.CrossRefGoogle Scholar
  34. 34.
    A. Friedman, G. Craciun (2005). A model of intracellular transport of particles in an axon. J Math Biol, 51(4.2), pp. 217–46.zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    J. Hoffman (1992). Numerical methods for engineers and scientists., McGraw-Hill, Inc.Google Scholar
  36. 36.
    W. Hundsdorfer, J.G. Verwer (2003). Numerical solution of time-dependent advection-diffusion-reaction equations., Springer.Google Scholar
  37. 37.
    D.A. Smith and R.M. Simmons (2001). Models of Motor-Assisted Transport of Intracellular Particles. Biophys J, 80(1) pp. 45–68.CrossRefMathSciNetGoogle Scholar
  38. 38.
    M. Badoual, F. Jülicher, J. Prost (2002). Bidirectional Cooperative Motion of Molecular Motors. Proc Natl Acad Sci, 99(10), pp. 6696–6701.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • S.B. Shah
    • 1
  • G. Yang
    • 3
  • G. Danuser
    • 3
  • L.S.B. Goldstein
    • 2
  1. 1.Dept. of BioengineeringUniversity of Maryland
  2. 2.Dept. of Cellular and Molecular MedicineUniversity of California of San DiegoLa Jolla
  3. 3.Dept. of Cell BiologyThe Scripps Research InstituteLa Jolla

Personalised recommendations