Skip to main content

How Linear Motor Proteins Work

  • Chapter
  • 1107 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 711))

Abstract

Most animals perform sophisticated forms of movement such as walking, running, flying and swimming using their skeletal muscles. Although directed movement is not generally associated with plants, cytoplasmic streaming in plant cells can reach velocities greater than 50 μm/s and thus constitutes one of the fastest forms of directed movement. Unicellular eukaryotic organisms and prokaryotes display diverse mechanisms by which they are able to actively move towards a food source, light or other sensory stimuli. On the cellular level active transport of vesicles and organelles is required, since the cytoplasm resembles a gel with a mesh size of approximately 50 nm, which makes the passive transport of organelle-sized particles impossible. For elongated cells such as neurons, even proteins and small metabolites have to be actively transported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. D. Vale (2000). AAA proteins. Lords of the ring. J Cell Biol, 150, pp. 13–20.

    Article  Google Scholar 

  2. L. M. DiBella and S. M. King (2001). Dynein motors of the Chlamydomonas flagellum. Int Rev Cytol, 210, pp. 227–268.

    Article  Google Scholar 

  3. I. Milisav (1998). Dynein and dynein-related genes. Cell Motil Cytoskeleton, 39, pp. 261–272.

    Article  Google Scholar 

  4. M. P. Koonce and M. Samso (2004). Of rings and levers: the dynein motor comes of age. Trends Cell Biol, 14, pp. 612–619.

    Article  Google Scholar 

  5. D. J. Asai and M. P. Koonce (2001). The dynein heavy chain: structure, mechanics and evolution. Trends Cell Biol, 11, pp. 196–202.

    Article  Google Scholar 

  6. K. Oiwa and H. Sakakibara (2005). Recent progress in dynein structure and mechanism. Curr Opin Cell Biol, 17, pp. 98–103.

    Article  Google Scholar 

  7. M. A. Geeves, R. Fedorov, and D. J. Manstein (2005). Molecular mechanism of actomyosin-based motility. Cell Mol Life Sci, 62, pp. 1462–1477.

    Article  Google Scholar 

  8. S. A. Burgess, M. L. Walker, H. Sakakibara, P. J. Knight, and K. Oiwa (2003). Dynein structure and power stroke. Nature, 421, pp. 715–718.

    Article  ADS  Google Scholar 

  9. F. Kozielski, S. Sack, A. Marx, M. Thormahlen, E. Schonbrunn, V. Biou, A. Thompson, E. M. Mandelkow, and E. Mandelkow (1997). The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell, 91, pp. 985–994.

    Article  Google Scholar 

  10. F. J. Kull, E. P. Sablin, R. Lau, R. J. Fletterick, and R. D. Vale (1996). Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature, 380, pp. 550–555.

    Article  ADS  Google Scholar 

  11. I. Rayment, W. R. Rypniewski, K. Schmidt-Base, R. Smith, D. R. Tomchick, M. M. Benning, D. A. Winkelmann, G. Wesenberg, and H. M. Holden (1993). Three-dimensional structure of myosin subfragment-1: a molecular motor. Science, 261, pp. 50–58.

    Article  ADS  Google Scholar 

  12. R. S. Goody and W. Hofmann-Goody (2002). Exchange factors, effectors, GAPs and motor proteins: common thermodynamic and kinetic principles for different functions. Eur Biophys J, 31, pp. 268–274.

    Article  Google Scholar 

  13. R. D. Vale (1996). Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J Cell Biol, 135, pp. 291–302.

    Article  Google Scholar 

  14. M. Anson, M. A. Geeves, S. E. Kurzawa, and D. J. Manstein (1996). Myosin motors with artificial lever arms. EMBO J, 15, pp. 6069–6074.

    Google Scholar 

  15. T. Q. Uyeda, P. D. Abramson, and J. A. Spudich (1996). The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci USA, 93, pp. 4459–4464.

    Article  ADS  Google Scholar 

  16. P. B. Conibear, C. R. Bagshaw, P. G. Fajer, M. Kovacs, and A. Malnasi-Csizmadia (2003). Myosin cleft movement and its coupling to actomyosin dissociation. Nat Struct Biol, 10, pp. 831–835.

    Article  Google Scholar 

  17. P. D. Coureux, A. L. Wells, J. Menetrey, C. M. Yengo, C. A. Morris, H. L. Sweeney, and A. Houdusse (2003). A structural state of the myosin V motor without bound nucleotide. Nature, 425, pp. 419–423.

    Article  ADS  Google Scholar 

  18. T. F. Reubold, S. Eschenburg, A. Becker, F. J. Kull, and D. J. Manstein (2003). A structural model for actin-induced nucleotide release in myosin. Nat Struct Biol, 10, pp. 826–830.

    Article  Google Scholar 

  19. K. C. Holmes, I. Angert, F. J. Kull, W. Jahn, and R. R. Schroder (2003). Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature, 425, pp. 423–427.

    Article  ADS  Google Scholar 

  20. H. Brzeska, T. J. Lynch, and E. D. Korn (1988). Localization of the actinbinding sites of Acanthamoeba myosin IB and effect of limited proteolysis on its actin-activated Mg2+-ATPase activity. J Biol Chem, 263, pp. 427–435.

    Google Scholar 

  21. M. A. Geeves and P. B. Conibear (1995). The role of three-state docking of myosin S1 with actin in force generation. Biophys J, 68, pp. 194S–199S; discussion 199S-201S.

    Google Scholar 

  22. K. Ito, T. Kashiyama, K. Shimada, A. Yamaguchi, J. Awata, Y. Hachikubo, D. J. Manstein, and K. Yamamoto (2003). Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity. Biochem Biophys Res Commun, 312, pp. 958–964.

    Article  Google Scholar 

  23. C. Ruff, M. Furch, B. Brenner, D. J. Manstein, and E. Meyhofer (2001). Singlemolecule tracking of myosins with genetically engineered amplifier domains. Nat Struct Biol, 8, pp. 226–229.

    Article  Google Scholar 

  24. M. Tominaga, H. Kojima, E. Yokota, H. Orii, R. Nakamori, E. Katayama, M. Anson, T. Shimmen, and K. Oiwa (2003). Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J, 22, pp. 1263–1272.

    Article  Google Scholar 

  25. S. Higashi-Fujime, R. Ishikawa, H. Iwasawa, O. Kagami, E. Kurimoto, K. Kohama, and T. Hozumi (1995). The fastest actin-based motor protein from the green algae, Chara, and its distinct mode of interaction with actin. FEBS Lett, 375, pp. 151–154.

    Article  Google Scholar 

  26. R. A. Walker (1995). ncd and kinesin motor domains interact with both alphaand beta-tubulin. Proc Natl Acad Sci USA, 92, pp. 5960–5964.

    Article  ADS  Google Scholar 

  27. S. A. Endow, S. J. Kang, L. L. Satterwhite, M. D. Rose, V. P. Skeen, and E. D. Salmon (1994). Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J, 13, pp. 2708–2713.

    Google Scholar 

  28. J. Menetrey, A. Bahloul, A. L. Wells, C. M. Yengo, C. A. Morris, H. L. Sweeney, and A. Houdusse (2005). The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature, 435, pp. 779–785.

    Article  ADS  Google Scholar 

  29. A. L. Wells, A. W. Lin, L. Q. Chen, D. Safer, S. M. Cain, T. Hasson, B. O. Carragher, R. A. Milligan, and H. L. Sweeney (1999). Myosin VI is an actinbased motor that moves backwards. Nature, 401, pp. 505–508.

    Article  ADS  Google Scholar 

  30. A. Inoue, J. Saito, R. Ikebe, and M. Ikebe (2002). Myosin IXb is a single-headed minus-end-directed processive motor. Nat Cell Biol, 4, pp. 302–306.

    Article  Google Scholar 

  31. M. A. Geeves, and K. C. Holmes (1999). Structural mechanism of muscle contraction. Ann Rev Biochem, 68, pp. 687–728.

    Article  Google Scholar 

  32. G. Tsiavaliaris, S. Fujita-Becker, and D. J. Manstein (2004). Molecular engineering of a backwards-moving myosin motor. Nature, 427, pp. 558–561.

    Article  ADS  Google Scholar 

  33. W. Kliche, S. Fujita-Becker, M. Kollmar, D. J. Manstein, and F. J. Kull (2001). Structure of a genetically engineered molecular motor. EMBO J, 20, pp. 40–46.

    Article  Google Scholar 

  34. M. Kollmar, U. Dürrwang, W. Kliche, D. J. Manstein, and F. J. Kull (2002). Crystal structure of the motor domain of a class-I myosin. EMBO J, 21, pp. 2517–2525.

    Article  Google Scholar 

  35. B. Prakash, L. Renault, G. J. Praefcke, C. Herrmann, and A. Wittinghofer (2000). Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J, 19, pp. 4555–4564.

    Article  Google Scholar 

  36. S. J. Kron and J. A. Spudich (1986). Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci USA, 83, pp. 6272–6276.

    Article  ADS  Google Scholar 

  37. L. Limberis and R. J. Stewart (2000). Toward kinesin-powered microdevices. Nanotechnol, 11, pp. 47–51.

    Article  ADS  Google Scholar 

  38. R. Stracke, K. J. Bohm, J. Burgold, H. J. Schacht, and E. Unger (2000). Physical and technical parameters determining the functioning of a kinesin-based cell-free motor system. Nanotechnol, 11, pp. 52–56.

    Article  ADS  Google Scholar 

  39. K. J. Böhm, R. Stracke, P. Muhlig, and E. Unger (2001). Motor protein-driven unidirectional transport of micrometer-sized cargoes across isopolar microtubule arrays. Nanotechnol, 12, pp. 238–244.

    Article  ADS  Google Scholar 

  40. R. Bunk, J. Klinth, L. Montelius, I. A. Nicholls, P. Omling, S. Tagerud, and A. Mansson (2003). Actomyosin motility on nanostructured surfaces. Biochem Biophys Res Commun, 301, pp. 783–788.

    Article  Google Scholar 

  41. D. V. Nicolau, H. Suzuki, S. Mashiko, T. Taguchi, and S. Yoshikawa (1999). Actin motion on microlithographically functionalized myosin surfaces and tracks. Biophys J, 77, pp. 1126–1134.

    Article  Google Scholar 

  42. H. Suzuki, A. Yamada, K. Oiwa, H. Nakayama, and S. Mashiko (1997). Control of actin moving trajectory by patterned poly(methylmethacrylate) tracks. Biophys J, 72, pp. 1997–2001.

    Article  Google Scholar 

  43. H. Suzuki, K. Oiwa, A. Yamada, H. Sakakibara, H. Nakayama, and S. Mashiko (1995). Linear Arrangement of Motor Protein on a Mechanically Deposited Fluoropolymer Thin Film. Jpn J Appl Phys, 34, pp. 3937–3941.

    Article  ADS  Google Scholar 

  44. J. C. Wittmann and P. Smith (1991). Highly oriented thin-films of poly(tetrafluoroethylene) as a substrate for oriented growth of materials. Nature, 352, pp. 414–417.

    Article  ADS  Google Scholar 

  45. D. Fenwick, P. Smith, and J. C. Wittmann (1996). Epitaxial and graphoepitaxial growth of materials on highly orientated PTFE substrates. J Mat Science, 31, pp. 128–131.

    Article  ADS  Google Scholar 

  46. J. R. Dennis, J. Howard, and V. Vogel (1999). Molecular shuttles: directed motion of microtubules slang nanoscale kinesin tracks. Nanotechnol, 10, pp. 232–236.

    Article  ADS  Google Scholar 

  47. K. Oiwa, D. M. Jameson, J. C. Croney, C. T. Davis, J. F. Eccleston, and M. Anson (2003). The 2’-O-and 3’-O-Cy3-EDA-ATP(ADP) complexes with myosin subfragment-1 are spectroscopically distinct. Biophys J, 84, pp. 634–642.

    Article  Google Scholar 

  48. J. Clemmens, H. Hess, J. Howard, and V. Vogel (2003a). Analysis of microtubule guidance in open microfabricated channels coated with the motor protein kinesin. Langmuir, 19, pp. 1738–1744.

    Article  Google Scholar 

  49. J. Clemmens, H. Hess, R. Lipscomb, Y. Hanein, K. F. Bohringer, C. M. Matzke, G. D. Bachand, B. C. Bunker, and V. Vogel (2003b). Mechanisms of microtubule guiding on microfabricated kinesin-coated surfaces: Chemical and topographic surface patterns. Langmuir, 19, pp. 10967–10974.

    Article  Google Scholar 

  50. Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, and T. Q. Uyeda (2001). Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks. Biophys J, 81, pp. 1555–1561.

    Article  Google Scholar 

  51. R. Bunk, M. Sundberg, A. Mansson, I. A. Nicholls, P. Omling, S. Tagerud, and L. Montelius (2005). Guiding motor-propelled molecules with nanoscale precision through silanized bi-channel structures. Nanotechnol, 16, pp. 710–717.

    Article  ADS  Google Scholar 

  52. J. H. Kaplan, B. Forbush, 3rd, and J. F. Hoffman (1978). Rapid photolytic release of adenosine 5’-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry, 17, pp. 1929–1935.

    Article  Google Scholar 

  53. J. A. McCray, L. Herbette, T. Kihara, and D. R. Trentham (1980). A new approach to time-resolved studies of ATP-requiring biological systems; laser flash photolysis of caged ATP. Proc Natl Acad Sci USA, 77, pp. 7237–7241.

    Article  ADS  Google Scholar 

  54. H. Hess, J. Clemmens, D. Qin, J. Howard, and V. Vogel (2001). Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Letters, 1, pp. 235–239.

    Article  ADS  Google Scholar 

  55. G. Marriott and M. Heidecker (1996). Light-directed generation of the actinactivated ATPase activity of caged heavy meromyosin. Biochemistry, 35, pp. 3170–3174.

    Article  Google Scholar 

  56. G. Marriott, P. Roy, and K. Jacobson (2003). Preparation and light-directed activation of caged proteins. Methods Enzymol, 360, pp. 274–288.

    Article  Google Scholar 

  57. H. Kato, T. Nishizaka, T. Iga, K. Kinosita, Jr., and S. Ishiwata (1999). Imaging of thermal activation of actomyosin motors. Proc Natl Acad Sci USA, 96, pp. 9602–9606.

    Article  ADS  Google Scholar 

  58. Y. Y. Toyoshima, C. Toyoshima, and J. A. Spudich (1989). Bidirectional movement of actin filaments along tracks of myosin heads. Nature, 341, pp. 154–156.

    Article  ADS  Google Scholar 

  59. Y. Inoue, Y. Y. Toyoshima, A. H. Iwane, S. Morimoto, H. Higuchi, and T. Yanagida (1997). Movements of truncated kinesin fragments with a short or an artificial flexible neck. Proc Natl Acad Sci USA, 94, pp. 7275–7280.

    Article  ADS  Google Scholar 

  60. S. Itakura, H. Yamakawa, Y. Y. Toyoshima, A. Ishijima, T. Kojima, Y. Harada, T. Yanagida, T. Wakabayashi, and K. Sutoh (1993). Force-generating domain of myosin motor. Biochem Biophys Res Commun, 196, pp. 1504–1510.

    Article  Google Scholar 

  61. A. H. Iwane, K. Kitamura, M. Tokunaga, and T. Yanagida (1997). Myosin subfragment-1 is fully equipped with factors essential for motor function. Biochem Biophys Res Commun, 230, pp. 76–80.

    Article  Google Scholar 

  62. R. W. Lymn and E. W. Taylor (1970). Transient state phosphate production in the hydrolysis of nucleoside triphosphates by myosin. Biochemistry, 9, pp. 2975–2983.

    Article  Google Scholar 

  63. S. Fujita-Becker, U. Dürrwang, M. Erent, R. J. Clark, M. A. Geeves, and D. J. Manstein (2005). Changes in Mg2+ ion concentration and heavy chain phosphorylation regulate the motor activity of a class I myosin. J Biol Chem, 280, pp. 6064–6071.

    Article  Google Scholar 

  64. E. M. Ostap, T. Lin, S. S. Rosenfeld, and N. Tang (2002). Mechanism of regulation of Acanthamoeba myosin-IC by heavy-chain phosphorylation. Biochemistry, 41, pp. 12450–12456.

    Article  Google Scholar 

  65. Z. Y. Wang, F. Wang, J. R. Sellers, E. D. Korn, and J. A. Hammer, 3rd (1998). Analysis of the regulatory phosphorylation site in Acanthamoeba myosin IC by using site-directed mutagenesis. Proc Natl Acad Sci USA, 95, pp. 15200–15205.

    Article  ADS  Google Scholar 

  66. S. S. Rosenfeld, A. Houdusse, and H. L. Sweeney (2005). Magnesium regulates ADP dissociation from myosin V. J Biol Chem, 280, pp. 6072–6079.

    Article  Google Scholar 

  67. N. J. Carter and R. A. Cross (2005). Mechanics of the kinesin step. Nature, 435, pp. 308–12.

    Article  ADS  Google Scholar 

  68. P. B. Conibear and M. A. Geeves (1998). Cooperativity between the two heads of rabbit skeletal muscle heavy meromyosin in binding to actin. Biophys J, 75, pp. 926–937.

    Article  Google Scholar 

  69. M. Nyitrai and M. A. Geeves (2004). Adenosine diphosphate and strain sensitivity in myosin motors. Philos Trans R Soc Lond B Biol Sci, 359, pp. 1867–1877.

    Article  Google Scholar 

  70. D. C. Turner, C. Chang, K. Fang, S. L. Brandow, and D. B. Murphy (1995). Selective adhesion of functional microtubules to patterned silane surfaces. Biophys. J, 69, pp. 2782–2789.

    Article  Google Scholar 

  71. M. G. L. van den Heuvel, C. T. Butcher, R. M. M. Smeets, S. Diez, and C. Dekker (2005). High rectifying efficiencies of microtubule motility on kinesin-coated gold nanostructures. Nano Letters, 5, pp. 1117–1122.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Oiwa, K., Manstein, D. (2007). How Linear Motor Proteins Work. In: Linke, H., Månsson, A. (eds) Controlled Nanoscale Motion. Lecture Notes in Physics, vol 711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49522-3_3

Download citation

Publish with us

Policies and ethics