How Linear Motor Proteins Work

  • K. Oiwa
  • D.J. Manstein
Part of the Lecture Notes in Physics book series (LNP, volume 711)


Most animals perform sophisticated forms of movement such as walking, running, flying and swimming using their skeletal muscles. Although directed movement is not generally associated with plants, cytoplasmic streaming in plant cells can reach velocities greater than 50 μm/s and thus constitutes one of the fastest forms of directed movement. Unicellular eukaryotic organisms and prokaryotes display diverse mechanisms by which they are able to actively move towards a food source, light or other sensory stimuli. On the cellular level active transport of vesicles and organelles is required, since the cytoplasm resembles a gel with a mesh size of approximately 50 nm, which makes the passive transport of organelle-sized particles impossible. For elongated cells such as neurons, even proteins and small metabolites have to be actively transported.


Motor Protein Motor Domain Motility Assay Cytoplasmic Streaming Cytoplasmic Dynein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. D. Vale (2000). AAA proteins. Lords of the ring. J Cell Biol, 150, pp. 13–20.CrossRefGoogle Scholar
  2. 2.
    L. M. DiBella and S. M. King (2001). Dynein motors of the Chlamydomonas flagellum. Int Rev Cytol, 210, pp. 227–268.CrossRefGoogle Scholar
  3. 3.
    I. Milisav (1998). Dynein and dynein-related genes. Cell Motil Cytoskeleton, 39, pp. 261–272.CrossRefGoogle Scholar
  4. 4.
    M. P. Koonce and M. Samso (2004). Of rings and levers: the dynein motor comes of age. Trends Cell Biol, 14, pp. 612–619.CrossRefGoogle Scholar
  5. 5.
    D. J. Asai and M. P. Koonce (2001). The dynein heavy chain: structure, mechanics and evolution. Trends Cell Biol, 11, pp. 196–202.CrossRefGoogle Scholar
  6. 6.
    K. Oiwa and H. Sakakibara (2005). Recent progress in dynein structure and mechanism. Curr Opin Cell Biol, 17, pp. 98–103.CrossRefGoogle Scholar
  7. 7.
    M. A. Geeves, R. Fedorov, and D. J. Manstein (2005). Molecular mechanism of actomyosin-based motility. Cell Mol Life Sci, 62, pp. 1462–1477.CrossRefGoogle Scholar
  8. 8.
    S. A. Burgess, M. L. Walker, H. Sakakibara, P. J. Knight, and K. Oiwa (2003). Dynein structure and power stroke. Nature, 421, pp. 715–718.CrossRefADSGoogle Scholar
  9. 9.
    F. Kozielski, S. Sack, A. Marx, M. Thormahlen, E. Schonbrunn, V. Biou, A. Thompson, E. M. Mandelkow, and E. Mandelkow (1997). The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell, 91, pp. 985–994.CrossRefGoogle Scholar
  10. 10.
    F. J. Kull, E. P. Sablin, R. Lau, R. J. Fletterick, and R. D. Vale (1996). Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature, 380, pp. 550–555.CrossRefADSGoogle Scholar
  11. 11.
    I. Rayment, W. R. Rypniewski, K. Schmidt-Base, R. Smith, D. R. Tomchick, M. M. Benning, D. A. Winkelmann, G. Wesenberg, and H. M. Holden (1993). Three-dimensional structure of myosin subfragment-1: a molecular motor. Science, 261, pp. 50–58.CrossRefADSGoogle Scholar
  12. 12.
    R. S. Goody and W. Hofmann-Goody (2002). Exchange factors, effectors, GAPs and motor proteins: common thermodynamic and kinetic principles for different functions. Eur Biophys J, 31, pp. 268–274.CrossRefGoogle Scholar
  13. 13.
    R. D. Vale (1996). Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J Cell Biol, 135, pp. 291–302.CrossRefGoogle Scholar
  14. 14.
    M. Anson, M. A. Geeves, S. E. Kurzawa, and D. J. Manstein (1996). Myosin motors with artificial lever arms. EMBO J, 15, pp. 6069–6074.Google Scholar
  15. 15.
    T. Q. Uyeda, P. D. Abramson, and J. A. Spudich (1996). The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci USA, 93, pp. 4459–4464.CrossRefADSGoogle Scholar
  16. 16.
    P. B. Conibear, C. R. Bagshaw, P. G. Fajer, M. Kovacs, and A. Malnasi-Csizmadia (2003). Myosin cleft movement and its coupling to actomyosin dissociation. Nat Struct Biol, 10, pp. 831–835.CrossRefGoogle Scholar
  17. 17.
    P. D. Coureux, A. L. Wells, J. Menetrey, C. M. Yengo, C. A. Morris, H. L. Sweeney, and A. Houdusse (2003). A structural state of the myosin V motor without bound nucleotide. Nature, 425, pp. 419–423.CrossRefADSGoogle Scholar
  18. 18.
    T. F. Reubold, S. Eschenburg, A. Becker, F. J. Kull, and D. J. Manstein (2003). A structural model for actin-induced nucleotide release in myosin. Nat Struct Biol, 10, pp. 826–830.CrossRefGoogle Scholar
  19. 19.
    K. C. Holmes, I. Angert, F. J. Kull, W. Jahn, and R. R. Schroder (2003). Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature, 425, pp. 423–427.CrossRefADSGoogle Scholar
  20. 20.
    H. Brzeska, T. J. Lynch, and E. D. Korn (1988). Localization of the actinbinding sites of Acanthamoeba myosin IB and effect of limited proteolysis on its actin-activated Mg2+-ATPase activity. J Biol Chem, 263, pp. 427–435.Google Scholar
  21. 21.
    M. A. Geeves and P. B. Conibear (1995). The role of three-state docking of myosin S1 with actin in force generation. Biophys J, 68, pp. 194S–199S; discussion 199S-201S.Google Scholar
  22. 22.
    K. Ito, T. Kashiyama, K. Shimada, A. Yamaguchi, J. Awata, Y. Hachikubo, D. J. Manstein, and K. Yamamoto (2003). Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity. Biochem Biophys Res Commun, 312, pp. 958–964.CrossRefGoogle Scholar
  23. 23.
    C. Ruff, M. Furch, B. Brenner, D. J. Manstein, and E. Meyhofer (2001). Singlemolecule tracking of myosins with genetically engineered amplifier domains. Nat Struct Biol, 8, pp. 226–229.CrossRefGoogle Scholar
  24. 24.
    M. Tominaga, H. Kojima, E. Yokota, H. Orii, R. Nakamori, E. Katayama, M. Anson, T. Shimmen, and K. Oiwa (2003). Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J, 22, pp. 1263–1272.CrossRefGoogle Scholar
  25. 25.
    S. Higashi-Fujime, R. Ishikawa, H. Iwasawa, O. Kagami, E. Kurimoto, K. Kohama, and T. Hozumi (1995). The fastest actin-based motor protein from the green algae, Chara, and its distinct mode of interaction with actin. FEBS Lett, 375, pp. 151–154.CrossRefGoogle Scholar
  26. 26.
    R. A. Walker (1995). ncd and kinesin motor domains interact with both alphaand beta-tubulin. Proc Natl Acad Sci USA, 92, pp. 5960–5964.CrossRefADSGoogle Scholar
  27. 27.
    S. A. Endow, S. J. Kang, L. L. Satterwhite, M. D. Rose, V. P. Skeen, and E. D. Salmon (1994). Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J, 13, pp. 2708–2713.Google Scholar
  28. 28.
    J. Menetrey, A. Bahloul, A. L. Wells, C. M. Yengo, C. A. Morris, H. L. Sweeney, and A. Houdusse (2005). The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature, 435, pp. 779–785.CrossRefADSGoogle Scholar
  29. 29.
    A. L. Wells, A. W. Lin, L. Q. Chen, D. Safer, S. M. Cain, T. Hasson, B. O. Carragher, R. A. Milligan, and H. L. Sweeney (1999). Myosin VI is an actinbased motor that moves backwards. Nature, 401, pp. 505–508.CrossRefADSGoogle Scholar
  30. 30.
    A. Inoue, J. Saito, R. Ikebe, and M. Ikebe (2002). Myosin IXb is a single-headed minus-end-directed processive motor. Nat Cell Biol, 4, pp. 302–306.CrossRefGoogle Scholar
  31. 31.
    M. A. Geeves, and K. C. Holmes (1999). Structural mechanism of muscle contraction. Ann Rev Biochem, 68, pp. 687–728.CrossRefGoogle Scholar
  32. 32.
    G. Tsiavaliaris, S. Fujita-Becker, and D. J. Manstein (2004). Molecular engineering of a backwards-moving myosin motor. Nature, 427, pp. 558–561.CrossRefADSGoogle Scholar
  33. 33.
    W. Kliche, S. Fujita-Becker, M. Kollmar, D. J. Manstein, and F. J. Kull (2001). Structure of a genetically engineered molecular motor. EMBO J, 20, pp. 40–46.CrossRefGoogle Scholar
  34. 34.
    M. Kollmar, U. Dürrwang, W. Kliche, D. J. Manstein, and F. J. Kull (2002). Crystal structure of the motor domain of a class-I myosin. EMBO J, 21, pp. 2517–2525.CrossRefGoogle Scholar
  35. 35.
    B. Prakash, L. Renault, G. J. Praefcke, C. Herrmann, and A. Wittinghofer (2000). Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J, 19, pp. 4555–4564.CrossRefGoogle Scholar
  36. 36.
    S. J. Kron and J. A. Spudich (1986). Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci USA, 83, pp. 6272–6276.CrossRefADSGoogle Scholar
  37. 37.
    L. Limberis and R. J. Stewart (2000). Toward kinesin-powered microdevices. Nanotechnol, 11, pp. 47–51.CrossRefADSGoogle Scholar
  38. 38.
    R. Stracke, K. J. Bohm, J. Burgold, H. J. Schacht, and E. Unger (2000). Physical and technical parameters determining the functioning of a kinesin-based cell-free motor system. Nanotechnol, 11, pp. 52–56.CrossRefADSGoogle Scholar
  39. 39.
    K. J. Böhm, R. Stracke, P. Muhlig, and E. Unger (2001). Motor protein-driven unidirectional transport of micrometer-sized cargoes across isopolar microtubule arrays. Nanotechnol, 12, pp. 238–244.CrossRefADSGoogle Scholar
  40. 40.
    R. Bunk, J. Klinth, L. Montelius, I. A. Nicholls, P. Omling, S. Tagerud, and A. Mansson (2003). Actomyosin motility on nanostructured surfaces. Biochem Biophys Res Commun, 301, pp. 783–788.CrossRefGoogle Scholar
  41. 41.
    D. V. Nicolau, H. Suzuki, S. Mashiko, T. Taguchi, and S. Yoshikawa (1999). Actin motion on microlithographically functionalized myosin surfaces and tracks. Biophys J, 77, pp. 1126–1134.CrossRefGoogle Scholar
  42. 42.
    H. Suzuki, A. Yamada, K. Oiwa, H. Nakayama, and S. Mashiko (1997). Control of actin moving trajectory by patterned poly(methylmethacrylate) tracks. Biophys J, 72, pp. 1997–2001.CrossRefGoogle Scholar
  43. 43.
    H. Suzuki, K. Oiwa, A. Yamada, H. Sakakibara, H. Nakayama, and S. Mashiko (1995). Linear Arrangement of Motor Protein on a Mechanically Deposited Fluoropolymer Thin Film. Jpn J Appl Phys, 34, pp. 3937–3941.CrossRefADSGoogle Scholar
  44. 44.
    J. C. Wittmann and P. Smith (1991). Highly oriented thin-films of poly(tetrafluoroethylene) as a substrate for oriented growth of materials. Nature, 352, pp. 414–417.CrossRefADSGoogle Scholar
  45. 45.
    D. Fenwick, P. Smith, and J. C. Wittmann (1996). Epitaxial and graphoepitaxial growth of materials on highly orientated PTFE substrates. J Mat Science, 31, pp. 128–131.CrossRefADSGoogle Scholar
  46. 46.
    J. R. Dennis, J. Howard, and V. Vogel (1999). Molecular shuttles: directed motion of microtubules slang nanoscale kinesin tracks. Nanotechnol, 10, pp. 232–236.CrossRefADSGoogle Scholar
  47. 47.
    K. Oiwa, D. M. Jameson, J. C. Croney, C. T. Davis, J. F. Eccleston, and M. Anson (2003). The 2’-O-and 3’-O-Cy3-EDA-ATP(ADP) complexes with myosin subfragment-1 are spectroscopically distinct. Biophys J, 84, pp. 634–642.CrossRefGoogle Scholar
  48. 48.
    J. Clemmens, H. Hess, J. Howard, and V. Vogel (2003a). Analysis of microtubule guidance in open microfabricated channels coated with the motor protein kinesin. Langmuir, 19, pp. 1738–1744.CrossRefGoogle Scholar
  49. 49.
    J. Clemmens, H. Hess, R. Lipscomb, Y. Hanein, K. F. Bohringer, C. M. Matzke, G. D. Bachand, B. C. Bunker, and V. Vogel (2003b). Mechanisms of microtubule guiding on microfabricated kinesin-coated surfaces: Chemical and topographic surface patterns. Langmuir, 19, pp. 10967–10974.CrossRefGoogle Scholar
  50. 50.
    Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, and T. Q. Uyeda (2001). Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks. Biophys J, 81, pp. 1555–1561.CrossRefGoogle Scholar
  51. 51.
    R. Bunk, M. Sundberg, A. Mansson, I. A. Nicholls, P. Omling, S. Tagerud, and L. Montelius (2005). Guiding motor-propelled molecules with nanoscale precision through silanized bi-channel structures. Nanotechnol, 16, pp. 710–717.CrossRefADSGoogle Scholar
  52. 52.
    J. H. Kaplan, B. Forbush, 3rd, and J. F. Hoffman (1978). Rapid photolytic release of adenosine 5’-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry, 17, pp. 1929–1935.CrossRefGoogle Scholar
  53. 53.
    J. A. McCray, L. Herbette, T. Kihara, and D. R. Trentham (1980). A new approach to time-resolved studies of ATP-requiring biological systems; laser flash photolysis of caged ATP. Proc Natl Acad Sci USA, 77, pp. 7237–7241.CrossRefADSGoogle Scholar
  54. 54.
    H. Hess, J. Clemmens, D. Qin, J. Howard, and V. Vogel (2001). Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Letters, 1, pp. 235–239.CrossRefADSGoogle Scholar
  55. 55.
    G. Marriott and M. Heidecker (1996). Light-directed generation of the actinactivated ATPase activity of caged heavy meromyosin. Biochemistry, 35, pp. 3170–3174.CrossRefGoogle Scholar
  56. 56.
    G. Marriott, P. Roy, and K. Jacobson (2003). Preparation and light-directed activation of caged proteins. Methods Enzymol, 360, pp. 274–288.CrossRefGoogle Scholar
  57. 57.
    H. Kato, T. Nishizaka, T. Iga, K. Kinosita, Jr., and S. Ishiwata (1999). Imaging of thermal activation of actomyosin motors. Proc Natl Acad Sci USA, 96, pp. 9602–9606.CrossRefADSGoogle Scholar
  58. 58.
    Y. Y. Toyoshima, C. Toyoshima, and J. A. Spudich (1989). Bidirectional movement of actin filaments along tracks of myosin heads. Nature, 341, pp. 154–156.CrossRefADSGoogle Scholar
  59. 59.
    Y. Inoue, Y. Y. Toyoshima, A. H. Iwane, S. Morimoto, H. Higuchi, and T. Yanagida (1997). Movements of truncated kinesin fragments with a short or an artificial flexible neck. Proc Natl Acad Sci USA, 94, pp. 7275–7280.CrossRefADSGoogle Scholar
  60. 60.
    S. Itakura, H. Yamakawa, Y. Y. Toyoshima, A. Ishijima, T. Kojima, Y. Harada, T. Yanagida, T. Wakabayashi, and K. Sutoh (1993). Force-generating domain of myosin motor. Biochem Biophys Res Commun, 196, pp. 1504–1510.CrossRefGoogle Scholar
  61. 61.
    A. H. Iwane, K. Kitamura, M. Tokunaga, and T. Yanagida (1997). Myosin subfragment-1 is fully equipped with factors essential for motor function. Biochem Biophys Res Commun, 230, pp. 76–80.CrossRefGoogle Scholar
  62. 62.
    R. W. Lymn and E. W. Taylor (1970). Transient state phosphate production in the hydrolysis of nucleoside triphosphates by myosin. Biochemistry, 9, pp. 2975–2983.CrossRefGoogle Scholar
  63. 63.
    S. Fujita-Becker, U. Dürrwang, M. Erent, R. J. Clark, M. A. Geeves, and D. J. Manstein (2005). Changes in Mg2+ ion concentration and heavy chain phosphorylation regulate the motor activity of a class I myosin. J Biol Chem, 280, pp. 6064–6071.CrossRefGoogle Scholar
  64. 64.
    E. M. Ostap, T. Lin, S. S. Rosenfeld, and N. Tang (2002). Mechanism of regulation of Acanthamoeba myosin-IC by heavy-chain phosphorylation. Biochemistry, 41, pp. 12450–12456.CrossRefGoogle Scholar
  65. 65.
    Z. Y. Wang, F. Wang, J. R. Sellers, E. D. Korn, and J. A. Hammer, 3rd (1998). Analysis of the regulatory phosphorylation site in Acanthamoeba myosin IC by using site-directed mutagenesis. Proc Natl Acad Sci USA, 95, pp. 15200–15205.CrossRefADSGoogle Scholar
  66. 66.
    S. S. Rosenfeld, A. Houdusse, and H. L. Sweeney (2005). Magnesium regulates ADP dissociation from myosin V. J Biol Chem, 280, pp. 6072–6079.CrossRefGoogle Scholar
  67. 67.
    N. J. Carter and R. A. Cross (2005). Mechanics of the kinesin step. Nature, 435, pp. 308–12.CrossRefADSGoogle Scholar
  68. 68.
    P. B. Conibear and M. A. Geeves (1998). Cooperativity between the two heads of rabbit skeletal muscle heavy meromyosin in binding to actin. Biophys J, 75, pp. 926–937.CrossRefGoogle Scholar
  69. 69.
    M. Nyitrai and M. A. Geeves (2004). Adenosine diphosphate and strain sensitivity in myosin motors. Philos Trans R Soc Lond B Biol Sci, 359, pp. 1867–1877.CrossRefGoogle Scholar
  70. 70.
    D. C. Turner, C. Chang, K. Fang, S. L. Brandow, and D. B. Murphy (1995). Selective adhesion of functional microtubules to patterned silane surfaces. Biophys. J, 69, pp. 2782–2789.CrossRefGoogle Scholar
  71. 71.
    M. G. L. van den Heuvel, C. T. Butcher, R. M. M. Smeets, S. Diez, and C. Dekker (2005). High rectifying efficiencies of microtubule motility on kinesin-coated gold nanostructures. Nano Letters, 5, pp. 1117–1122.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • K. Oiwa
    • 1
  • D.J. Manstein
    • 2
  1. 1.Kobe Advanced ICT Research Center (KARC)National Institute of Information and Communications TechnologyNishi-ku, KobeJapan
  2. 2.Institutes for Biophysical Chemistry and Structure AnalysisHannover Medical SchoolHannoverGermany

Personalised recommendations