Advertisement

Myosin Motors: The Chemical Restraints Imposed by ATP

  • I. Rayment
  • J. Allingham
Part of the Lecture Notes in Physics book series (LNP, volume 711)

Abstract

Most molecular motors use ATP. This is not surprising since this is the universal currency of energy for most of life’s processes. The question to be addressed in this chapter is how does the fundamental chemistry of ATP hydrolysis in- fluence the observed organization of linear molecular motors seen today with a focus on myosin. This chapter is written to ask in simple terms what can be gained by reconsidering the chemistry of ATP hydrolysis.

Keywords

Molecular Motor Myosin Head Motor Domain Myosin Motor Myosin Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. P. Jenks (1976). Handbook of biochemistry and molecular biology: proteins. G. D. Fasman. Cleveland, Ohio, CRC Press. 1, pp. 296–304.Google Scholar
  2. 2.
    M. Nyitrai and M. A. Geeves (2004). Adenosine diphosphate and strain sensitivity in myosin motors. Philos Trans R Soc Lond B Biol Sci 359, pp. 1867–77.CrossRefGoogle Scholar
  3. 3.
    Y. Takagi, H. Shuman, et al. (2004). Coupling between phosphate release and force generation in muscle actomyosin. Philos Trans R Soc Lond B Biol Sci 359, pp. 1913–20.CrossRefGoogle Scholar
  4. 4.
    A. V. Somlyo, A. S. Khromov, et al. (2004). Smooth muscle myosin: regulation and properties. Philos Trans R Soc Lond B Biol Sci 359, pp. 1921–30.CrossRefGoogle Scholar
  5. 5.
    S. J. Admiraal and D. Herschlag (1995). Mapping the Transition State for ATP Hydrolysis: Implications for Enzymatic Catalysis. Chemistry and Biology 2, pp. 729–739.CrossRefGoogle Scholar
  6. 6.
    S. J. Admiraal and D. Herschlag (1999). Catalysis of phosphoryl transfer from ATP by amine nucleophiles. Journal of the American Chemical Society 121, pp. 5837–45.CrossRefGoogle Scholar
  7. 7.
    R. Wolfenden (2003). Thermodynamic and extrathermodynamic requirements of enzyme catalysis. Biophys Chem 105, pp. 559–72.CrossRefGoogle Scholar
  8. 8.
    M. A. Geeves and K. C. Holmes (1999). Structural mechanism of muscle contraction. Annu Rev Biochem 68, pp. 687–728.CrossRefGoogle Scholar
  9. 9.
    J. Howard (2001). Mechanics of motor proteins and the cytoskeleton. Sunderland, Mass., Sinauer Associates, Publishers.Google Scholar
  10. 10.
    S. Wakelin, P. B. Conibear, et al. (2002). Engineering Dictyostelium discoideum myosin II for the introduction of site-specific fluorescence probes. J Muscle Res Cell Motil 23, pp. 673–83.CrossRefGoogle Scholar
  11. 11.
    E. M. De La Cruz and E. M. Ostap (2004). Relating biochemistry and function in the myosin superfamily. Curr Opin Cell Biol 16, pp. 61–7.CrossRefGoogle Scholar
  12. 12.
    W. Zeng, P. B. Conibear, et al. (2004). Dynamics of actomyosin interactions in relation to the cross-bridge cycle. Philos Trans R Soc Lond B Biol Sci 359, pp. 1843–55.CrossRefGoogle Scholar
  13. 13.
    L. E. Greene and E. Eisenberg (1978). Formation of a ternary complex: actin, 5′-adenylyl imidodiphosphate, and the subfragments of myosin. Proc Natl Acad Sci USA 75, pp. 54–8.CrossRefADSGoogle Scholar
  14. 14.
    J. A. Sleep and R. L. Hutton (1978). Actin mediated release of ATP from a myosin-ATP complex. Biochemistry 17, pp. 5423–30.CrossRefGoogle Scholar
  15. 15.
    T. Kashiyama, N. Kimura, et al. (2000). Cloning and characterization of a myosin from characean alga, the fastest motor protein in the world. J Biochem (Tokyo) 127 pp. 1065–70.Google Scholar
  16. 16.
    C. R. Bagshaw and D. R. Trentham (1973). Reversibility of Adenosine-Triphosphate Cleavage by Myosin. Biochemical Journal 133, pp. 323–328.Google Scholar
  17. 17.
    H. D. White, B. Belknap, et al. (1997). Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate. Biochemistry 36 pp. 11828–36.CrossRefGoogle Scholar
  18. 18.
    J. Howard (1997). Molecular motors: structural adaptations to cellular functions. Nature 389, pp. 561–7.CrossRefADSGoogle Scholar
  19. 19.
    M. Nyitrai, G. Hild, et al. (2000). Flexibility of myosin-subfragment-1 in its complex with actin as revealed by fluorescence resonance energy transfer. Eur J Biochem 267, pp. 4334–8.CrossRefGoogle Scholar
  20. 20.
    S. S. Rosenfeld, A. Houdusse, et al. (2005). Magnesium regulates ADP dissociation from myosin V. J Biol Chem 280, pp. 6072–9.CrossRefGoogle Scholar
  21. 21.
    I. Rayment, W. R. Rypniewski, et al. (1993). Three-Dimensional Structure of Myosin Subfragment-1: A Molecular Motor. Science 261, pp. 50–58.CrossRefADSGoogle Scholar
  22. 22.
    I. Rayment, H. M. Holden, et al. (1993). Structure of the Actin-Myosin Complex and its Implications for Muscle Contraction. Science 261, pp. 58–65.CrossRefADSGoogle Scholar
  23. 23.
    A. J. Fisher, C. A. Smith, et al. (1995). X-ray Structures of the Myosin Motor Domain of Dictyostellium discoideum Complexed with MgADP. BeFx and MgADP. AlF- 4 . Biochemistry 34, pp. 8960–72.CrossRefGoogle Scholar
  24. 24.
    C. A. Smith and I. Rayment (1996). X-ray structure of the Magnesium(II). ADP.Vanadate Complex of the Dictyostelium discoideum Myosin Motor Domain to 1.9 Å Resolution. Biochemistry 35, pp. 5404–17.CrossRefGoogle Scholar
  25. 25.
    A. M. Gulick, C. B. Bauer, et al. (1997). X-ray structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain. Biochemistry 36, pp. 11619–28.CrossRefGoogle Scholar
  26. 26.
    C. B. Bauer, H. M. Holden, et al. (2000). X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. J Biol Chem 275 pp. 38494–9.CrossRefGoogle Scholar
  27. 27.
    A. Houdusse, V. N. Kalabokis, et al. (1999). Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97, pp. 459–70.CrossRefGoogle Scholar
  28. 28.
    R. Dominguez, Y. Freyzon, et al. (1998). Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, pp. 559–71.CrossRefGoogle Scholar
  29. 29.
    P. D. Coureux, A. L. Wells, et al. (2003). A structural state of the myosin V motor without bound nucleotide. Nature 425, pp. 419–423CrossRefADSGoogle Scholar
  30. 30.
    P. D. Coureux, H. L. Sweeney, et al. (2004). Three myosin V structures delineate essential features of chemo-mechanical transduction. Embo J 23, pp. 4527–37.CrossRefGoogle Scholar
  31. 31.
    C. M. Yengo, E. M. De La Cruz, et al. (2002). Actin-induced closure of the actin-binding cleft of smooth muscle myosin. J Biol Chem 16, p. 16.Google Scholar
  32. 32.
    N. Volkmann, D. Hanein, et al. (2000). Evidence for cleft closure in actomyosin upon ADP release. Nat Struct Biol 7, pp. 1147–55.CrossRefGoogle Scholar
  33. 33.
    N. Volkmann, G. Ouyang, et al. (2003). Myosin isoforms show unique conformations in the actin-bound state. Proc Natl Acad Sci USA 100, pp. 3227–32.CrossRefADSGoogle Scholar
  34. 34.
    J. Menetrey, A. Bahloul, et al. (2005). The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435, pp. 779–85.CrossRefADSGoogle Scholar
  35. 35.
    K. C. Holmes, R. R. Schroder, et al. (2004). The structure of the rigor complex and its implications for the power stroke. Philos Trans R Soc Lond B Biol Sci 359, pp. 1819–28.CrossRefGoogle Scholar
  36. 36.
    C. R. Bagshaw and D. R. Trentham (1974). Characterization of Myosin-Product Complexes and of Product-Release Steps During Magnesium Ion-Dependent Adenosine-Triphosphatase Reaction. Biochemical Journal 141, pp. 331–49.Google Scholar
  37. 37.
    T. Schweins, M. Geyer, et al. (1995). Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins. Nat Struct Biol 2, pp. 36–44.CrossRefGoogle Scholar
  38. 38.
    T. Schweins and A. Warshel (1996). Mechanistic analysis of the observed linear free energy relationships in p21ras and related systems. Biochemistry, 35 pp. 14232–43.CrossRefGoogle Scholar
  39. 39.
    S. J. Admiraal and D. Herschlag (2000). The substrate-assisted general base catalysis model for phosphate monoester hydrolysis: Evaluation using reactivity comparisons. Journal of the American Chemical Society 122, pp. 2145–48.CrossRefGoogle Scholar
  40. 40.
    G. H. Li and Q. Cui (2004). Mechanochemical coupling in myosin: A theoretical analysis with molecular dynamics and combined QM/MM reaction path calculations. Journal of Physical Chemistry B 108, pp. 3342–57.CrossRefGoogle Scholar
  41. 41.
    R. G. Yount, D. Lawson, et al. (1995). Is Myosin a “Back Door” Enzyme? Biophysical Journal 68, pp. 44s–49s.Google Scholar
  42. 42.
    C. A. Smith and I. Rayment (1996). Active Site Comparisons Highlight Structural Similarities Between Myosin and Other P-Loop Proteins. Biophysical Journal 70, pp. 1590–602.CrossRefADSGoogle Scholar
  43. 43.
    M. V. Milburn, L. Tong, et al. (1990). Molecular Switch for Signal Transduction: Structural Differences Between Active and Inactive Forms of Protooncogenic ras Proteins. Science 247, pp. 939–45.CrossRefADSGoogle Scholar
  44. 44.
    S. R. Sprang (1997). G protein mechanisms: insights from structural analysis. Annu Rev Biochem 66, pp. 639–78.CrossRefGoogle Scholar
  45. 45.
    I. R. Vetter and A. Wittinghofer (2001). The guanine nucleotide-binding switch in three dimensions. Science 294, pp. 1299–304.CrossRefADSGoogle Scholar
  46. 46.
    A. E. Nixon, M. Brune, et al. (1995). Kinetics of inorganic phosphate release during the interaction of p21ras with the GTPase-activating proteins, p120-GAP and neurofibromin. Biochemistry 34, pp. 15592–8.CrossRefGoogle Scholar
  47. 47.
    K. Scheffzek, M. R. Ahmadian, et al. (1997). The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, pp. 333–8.CrossRefGoogle Scholar
  48. 48.
    K. Rittinger, P. A. Walker, et al. (1997). Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 389, pp. 758–62.CrossRefADSGoogle Scholar
  49. 49.
    M. J. Seewald, C. Korner, et al. (2002). RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415, pp. 662–6.CrossRefADSGoogle Scholar
  50. 50.
    M. R. Ahmadian, P. Stege, et al. (1997). Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat Struct Biol 4, pp. 686–9.CrossRefGoogle Scholar
  51. 51.
    D. R. Davies and W. G. Hol (2004). The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes. FEBS Lett 577, pp. 315–21.CrossRefGoogle Scholar
  52. 52.
    R. A. Cross (2004). The kinetic mechanism of kinesin. Trends Biochem Sci 29, pp. 301–9.CrossRefMathSciNetGoogle Scholar
  53. 53.
    L. M. Klumpp, A. Hoenger, et al. (2004). Kinesin’s second step. Proc Natl Acad Sci USA 101, pp. 3444–9.CrossRefADSGoogle Scholar
  54. 54.
    S. S. Rosenfeld, P. M. Fordyce, et al. (2003). Stepping and stretching. How kinesin uses internal strain to walk processively. J Biol Chem 278, pp. 18550–6.CrossRefGoogle Scholar
  55. 55.
    E. P. Sablin and R. J. Fletterick (2004). Coordination between motor domains in processive kinesins. J Biol Chem 279, pp. 15707–10.CrossRefGoogle Scholar
  56. 56.
    M. Kikkawa, E. P. Sablin, et al. (2001). Switch-based mechanism of kinesin motors. Nature 411, pp. 439–45.CrossRefADSGoogle Scholar
  57. 57.
    R. Nitta, M. Kikkawa, et al. (2004). KIF1A alternately uses two loops to bind microtubules. Science 305, pp. 678–83.CrossRefADSGoogle Scholar
  58. 58.
    F. J. Kull, E. P. Sablin, et al. (1996). Crystal Structure of the Kinesin Motor Domain Reveals a Structural Similarity to Myosin. Nature 380, pp. 550–5.CrossRefADSGoogle Scholar
  59. 59.
    E. P. Sablin, J. F. Kull, et al. (1996). Three-Dimensional Structure of the Motor Domain of NCD, a Kinesin-Related Motor with Reversed Polarity of Movement. Nature 380, pp. 555–9.CrossRefADSGoogle Scholar
  60. 60.
    F. J. Kull, R. D. Vale, et al. (1998). The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J Muscle Res Cell Motil 19, pp. 877–86.CrossRefGoogle Scholar
  61. 61.
    E. P. Sablin and R. J. Fletterick (2001). Nucleotide switches in molecular motors: structural analysis of kinesins and myosins. Curr Opin Struct Biol 11, pp. 716–24.CrossRefGoogle Scholar
  62. 62.
    Y. Okada and N. Hirokawa (2000). Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc Natl Acad Sci USA 97, pp. 640–5.CrossRefADSGoogle Scholar
  63. 63.
    Y. Okada and N. Hirokawa (1999). A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, pp. 1152–7.CrossRefADSGoogle Scholar
  64. 64.
    M. Tomishige, D. R. Klopfenstein, et al. (2002). Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science 297, pp. 2263–7.CrossRefADSGoogle Scholar
  65. 65.
    S. Gourinath, D. M. Himmel, et al. (2003). Crystal structure of scallop Myosin s1 in the pre-power stroke state to 2.6 a resolution: flexibility and function in the head. Structure (Camb) 11, pp. 1621–7.CrossRefGoogle Scholar
  66. 66.
    M. Kollmar, U. Durrwang, et al. (2002). Crystal structure of the motor domain of a class-I myosin. Embo J 21, pp. 2517–25.CrossRefGoogle Scholar
  67. 67.
    T. F. Reubold, S. Eschenburg, et al. (2003). A structural model for actin-induced nucleotide release in myosin. Nat Struct Biol 10, pp. 826–30.CrossRefGoogle Scholar
  68. 68.
    D. Risal, S. Gourinath, et al. (2004). Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding. Proc Natl Acad Sci USA 101, pp. 8930–5.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • I. Rayment
    • 1
  • J. Allingham
    • 1
  1. 1.Department of BiochemistryUniversity of WisconsinMadisonUSA

Personalised recommendations