Advertisement

Nanotechnology Enhanced Functional Assays of Actomyosin Motility – Potentials and Challenges

  • A. Månsson
  • I.A. Nicholls
  • P. Omling
  • S. Tågerud
  • L. Montelius
Part of the Lecture Notes in Physics book series (LNP, volume 711)

Abstract

Muscle contraction occurs as a result of force-producing interactions between the contractile proteins myosin II and actin with the two proteins highly ordered in the filament lattice of the muscle sarcomere. In contrast to this wellordered structure, most in vitro studies are performed with the contractile proteins in a disordered arrangement. Here we first review the existing in vitro motility assays and then consider how they can be improved by the use of nanotechnology. As a basis for such improvement we describe our recent work where we used chemically and topographically patterned surfaces to achieve selective localization of actomyosin motor function to predetermined areas of sub-micrometer dimensions. We also describe guidance and unidirectional actin filament sliding on nanosized tracks and suggest how such tracks can be combined with 1. microfluidics-based rapid solution exchange and 2. application of electromagnetic forces of well-defined orientation, thus simulating the lifting of a weight by actomyosin. As a related issue we discuss the usefulness of nanotechnology based assay systems for miniaturized highthroughput drug screening systems with molecular motors as drug targets. Finally, we consider the potentials and challenges in using nanotechnology to reconstruct the most essential aspects of cellular order within the muscle sarcomere.

Keywords

Molecular Motor Myosin Head Motility Assay Myosin Molecule Myosin Motor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.E. Huxley (1969). The mechanism of muscular contraction. Science, 164, pp. 1356–1365.CrossRefADSGoogle Scholar
  2. 2.
    J.T. Finer, R.M. Simmons, and J.A. Spudich (1994). Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature, 368, pp. 113–119.CrossRefADSGoogle Scholar
  3. 3.
    H. Tanaka, A. Ishijima, M. Honda, K. Saito, and T. Yanagida (1998). Orientation dependence of displacements by a single one-headed myosin relative to the actin filament. Biophys. J., 75, pp. 1886–1894.CrossRefGoogle Scholar
  4. 4.
    M.J. Tyska and D.M. Warshaw (2002). The myosin power stroke. Cell Motil Cytoskeleton, 51, pp. 1–15.CrossRefGoogle Scholar
  5. 5.
    T. Yanagida, K. Kitamura, H. Tanaka, H.A. Iwane, and S. Esaki (2000). Single molecule analysis of the actomyosin motor. Curr. Opin. Cell. Biol., 12, pp. 20–25.CrossRefGoogle Scholar
  6. 6.
    A. Houdusse, A.G. Szent-Gyorgyi, and C. Cohen (2000). Three conformational states of scallop myosin S1. Proc. Natl. Acad. Sci. USA, 97, pp. 11238–11243.CrossRefADSGoogle Scholar
  7. 7.
    W. Kabsch, H.G. Mannherz, D. Suck, E.F. Pai, and K.C. Holmes (1990). Atomic structure of the actin : DNase I complex. Nature, 347, pp. 37–44.CrossRefADSGoogle Scholar
  8. 8.
    I. Rayment, W.R. Rypniewski, K. Schmidt-Base, R. Smith, D.R. Tomchick, M.M. Benning, D.A. Winkelmann, G. Wesenberg, and H.M. Holden (1993b). Three-dimensional structure of myosin subfragment-1: A molecular motor. Science, 261, pp. 50–58.CrossRefADSGoogle Scholar
  9. 9.
    J. Liu, M.C. Reedy, Y.E. Goldman, C. Franzini-Armstrong, H. Sasaki, R.T. Tregear, C. Lucaveche, H. Winkler, B.A. Baumann, J.M. Squire, T.C. Irving, M.K. Reedy, and K.A. Taylor (2004). Electron tomography of fast frozen, stretched rigor fibers reveals elastic distortions in the myosin crossbridges. J. Struct. Biol., 147, pp. 268–282.CrossRefGoogle Scholar
  10. 10.
    M.A. Geeves, R. Fedorov, and D.J. Manstein (2005). Molecular mechanism of actomyosin-based motility. Cell Mol. Life Sci., 62, pp. 1462–1477.CrossRefGoogle Scholar
  11. 11.
    K.A. Edman, A. Mansson, and C. Caputo (1997). The biphasic force-velocity relationship in frog muscle fibres and its evaluation in terms of cross-bridge function. J. Physiol., 503, pp. 141–156.CrossRefGoogle Scholar
  12. 12.
    A.F. Huxley and R.M. Simmons (1971). Proposed mechanism of force generation in striated muscle. Nature, 233, pp. 533–538.CrossRefADSGoogle Scholar
  13. 13.
    V. Lombardi, G. Piazzesi, M.A. Ferenczi, H. Thirlwell, I. Dobbie, and M. Irving (1995). Elastic distortion of myosin heads and repriming of the working stroke in muscle. Nature, 374, pp. 553–555.CrossRefADSGoogle Scholar
  14. 14.
    C. Lionne, R. Stehle, F. Travers, and T. Barman (1999). Cryoenzymic studies on an organized system: myofibrillar ATPases and shortening. Biochemistry, 38, pp. 8512–8520.CrossRefGoogle Scholar
  15. 15.
    C. Tesi, F. Colomo, S. Nencini, N. Piroddi, and C. Poggesi (2000). The effect of inorganic phosphate on force generation in single myofibrils from rabbit skeletal muscle. Biophys. J., 78, pp. 3081–3092.CrossRefGoogle Scholar
  16. 16.
    A.F. Huxley (1957). Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem., 7, pp. 255–318.Google Scholar
  17. 17.
    J. Howard (2001). Mechanics of motor proteins and the cytoskeleton. Sinauer Associates Inc., Sunderland, MA.Google Scholar
  18. 18.
    H.E. Huxley (1984). Time-resolved X-ray diffraction studies of cross-bridge movement and their interpretation. Adv. Exp. Med. Biol., 170, pp. 161–175.Google Scholar
  19. 19.
    M. Reconditi, N. Koubassova, M. Linari, I. Dobbie, T. Narayanan, O. Diat, G. Piazzesi, V. Lombardi and M. Irving (2003). The conformation of myosin head domains in rigor muscle determined by X-ray interference. Biophys. J., 85, pp. 1098–1110.CrossRefGoogle Scholar
  20. 20.
    A.M. Gordon, E. Homsher, and M. Regnier (2000). Regulation of contraction in striated muscle. Physiol. Rev., 80, pp. 853–924.Google Scholar
  21. 21.
    J.R. Sellers (1999). Myosins. Oxford University Press, Oxford.Google Scholar
  22. 22.
    S.J. Kron and J.A. Spudich (1986). Fluorescent actin filaments move on myosin fixed to a glass surface. Proc. Natl. Acad. Sci. USA, 83, pp. 6272–6276.CrossRefADSGoogle Scholar
  23. 23.
    S.J. Kron, Y.Y. Toyoshima, T.Q. Uyeda, and J.A. Spudich (1991). Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol. 196, pp. 399–416.CrossRefGoogle Scholar
  24. 24.
    Y. Harada, K. Sakurada, T. Aoki, D.D. Thomas, and T. Yanagida (1990). Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J. Mol. Biol., 216, pp. 49–68.CrossRefGoogle Scholar
  25. 25.
    E. Homsher, F. Wang, and J.R. Sellers (1992). Factors affecting movement of F-actin filaments propelled by skeletal muscle heavy meromyosin. Am. J. Physiol., 262, pp. C714–723Google Scholar
  26. 26.
    G. Tsiavaliaris, S. Fujita-Becker, and D.J. Manstein (2004). Molecular engineering of a backwards-moving myosin motor. Nature, 427, pp. 558–561.CrossRefADSGoogle Scholar
  27. 27.
    T.Q. Uyeda, S.J. Kron, and J.A. Spudich (1990). Myosin step size. Estimation from slow sliding movement of actin over low densities of heavy meromyosin. J. Mol. Biol., 214, pp. 699–710.CrossRefGoogle Scholar
  28. 28.
    A.L. Wells, A.W. Lin, L.Q. Chen, D. Safer, S.M. Cain, T. Hasson, B.O. Carragher, R.A. Milligan, and H.L. Sweeney (1999). Myosin VI is an actin-based motor that moves backwards. Nature, 401, pp. 505–508.CrossRefADSGoogle Scholar
  29. 29.
    M.P. Sheetz and J.A. Spudich (1983). Movement of myosin-coated structures on actin cables. Cell Motil., 3, pp. 485–489.CrossRefGoogle Scholar
  30. 30.
    J.A. Spudich, S.J. Kron, and M.P. Sheetz (1985). Movement of myosin-coated beads on oriented filaments reconstituted from purified actin. Nature, 315, pp. 584–586.CrossRefADSGoogle Scholar
  31. 31.
    T. Yanagida, M. Nakase, K. Nishiyama, and F. Oosawa (1984). Direct observation of motion of single F-actin filaments in the presence of myosin. Nature, 307, pp. 58–60.CrossRefADSGoogle Scholar
  32. 32.
    B. Guo and W.H. Guilford (2004). The tail of myosin reduces actin filament velocity in the in vitro motility assay. Cell Motil Cytoskeleton, 59, pp. 264–272.CrossRefGoogle Scholar
  33. 33.
    A. Kishino and T. Yanagida (1988). Force measurements by micromanipulation of a single actin filament by glass needles. Nature, 334, pp. 74–76.CrossRefADSGoogle Scholar
  34. 34.
    J.E. Molloy, J.E. Burns, K.-J. Jones, R.T. Tregear, and D.C. White (1995). Movement and force produced by a single myosin head. Nature, 378, pp. 209–212.CrossRefADSGoogle Scholar
  35. 35.
    Y.Y. Toyoshima (1993). How are myosin fragments bound to nitrocellulose film? Adv. Exp. Med. Biol., 332, pp. 259–265.Google Scholar
  36. 36.
    T. Scholz and B. Brenner (2003). Actin sliding on reconstituted myosin filaments containing only one myosin heavy chain isoform. J. Muscle Res. Cell Motil., 24, pp. 77–86.CrossRefGoogle Scholar
  37. 37.
    M. Canepari, R. Rossi, M.A. Pellegrino, C. Reggiani, and R. Bottinelli (1999). Speeds of actin translocation in vitro by myosins extracted from single rat muscle fibres of different types. Exp. Physiol., 84, pp. 803–806.CrossRefGoogle Scholar
  38. 38.
    P. Hook and L. Larsson (2000). Actomyosin interactions in a novel single muscle fiber in vitro motility assay. J. Muscle Res. Cell. Motil., 21, pp. 357–365.CrossRefGoogle Scholar
  39. 39.
    A. Yamada, M. Yoshio, and H. Nakayama (1997). Bi-directional movement of actin filaments along long bipolar tracks of oriented rabbit skeletal muscle myosin molecules. FEBS Lett., 409, pp. 380–384.CrossRefGoogle Scholar
  40. 40.
    M. Sundberg, J.P. Rosengren, R. Bunk, J. Lindahl, I.A. Nicholls, S. Tågerud, P. Omling, L. Montelius, and A. Mansson (2003). Silanized surfaces for in vitro studies of actomyosin function and nanotechnology applications. Anal. Biochem., 323, pp. 127–138.CrossRefGoogle Scholar
  41. 41.
    S. Marston (2003). Random walks with thin filaments: application of in vitro motility assay to the study of actomyosin regulation. J. Muscle Res. Cell Motil., 24, pp. 149–156.CrossRefGoogle Scholar
  42. 42.
    S. Fujita-Becker, U. Durrwang, M. Erent, R.J. Clark, M.A. Geeves, and D.J. Manstein (2005). Changes in Mg2+ ion concentration and heavy chain phos-phorylation regulate the motor activity of a class I myosin. J. Biol. Chem., 280, pp. 6064–6071.CrossRefGoogle Scholar
  43. 43.
    J.R. Sellers, G. Cuda, F. Wang, and E. Homsher (1993). Myosin-specific adaptations of the motility assay. Methods Cell Biol. 39, pp. 23–49.CrossRefGoogle Scholar
  44. 44.
    M.J. Tyska, D.E. Dupuis, W.H. Guilford, J.B. Patlak, G.S. Waller, K.M. Trybus, D.M. Warshaw, and S. Lowey (1999). Two heads of myosin are better than one for generating force and motion. Proc. Natl. Acad. Sci. USA, 96, pp. 4402–4407.CrossRefADSGoogle Scholar
  45. 45.
    J.E. Molloy (2005). Muscle contraction: actin filaments enter the fray. Biophys. J., 89, pp. 1–2.CrossRefADSGoogle Scholar
  46. 46.
    M. Suzuki, H. Fujita, and S. Ishiwata (2005). A new muscle contractile system composed of a thick filament lattice and a single actin filament. Biophys. J., 89, pp. 321–328.CrossRefGoogle Scholar
  47. 47.
    E. Homsher, D.M. Lee, C. Morris, D. Pavlov, and L.S. Tobacman (2000). Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium. J. Physiol., 524 Pt 1, pp. 233–243.CrossRefGoogle Scholar
  48. 48.
    K.J. Bohm, R. Stracke, P. Muhlig, and E. Unger (2001). Motor protein-driven unidirectional transport of micrometer-sized cargoes across isopolar microtubule arrays. Nanotechnol., 12, pp. 238–244.CrossRefADSGoogle Scholar
  49. 49.
    T.B. Brown and W.O. Hancock (2002). A polarized microtubule array for kinesin-powered nanoscale assembly and force generation. Nano Letters, 2, pp. 1131–1135.CrossRefADSGoogle Scholar
  50. 50.
    R. Bunk, J. Klinth, L. Montelius, I.A. Nicholls, P. Omling, S. Tagerud, and A. Mansson (2003a). Actomyosin motility on nanostructured surfaces. Biochem. Biophys. Res. Commun., 301, pp. 783–788.CrossRefGoogle Scholar
  51. 51.
    R. Bunk, J. Klinth, J. Rosengren, I. Nicholls, S. Tagerud, P. Omling, A. Mansson, and L. Montelius (2003b). Towards a “nano-traffic” system powered by molecular motors. Microelectron. eng., 67–8, pp. 899–904.CrossRefGoogle Scholar
  52. 52.
    R. Bunk, A. Månsson, I.A. Nicholls, P. Omling, M. Sundberg, S. Tagerud, P. Carlberg, and L. Montelius (2005a). Guiding molecular motors by nanoim-printed structures. Jap. J. Appl. Phys., 44, pp. 3337–3340.CrossRefADSGoogle Scholar
  53. 53.
    R. Bunk, M. Sundberg, I.A. Nicholls, P. Omling, Tagerud, S.A. Månsson, and L. Montelius (2005b). Guiding motor-propelled molecules with nanoscale precision through silanized bi-channel structures. Nanotechnol, 16, pp. 710–717.CrossRefADSGoogle Scholar
  54. 54.
    J.R. Dennis, J. Howard, and V. Vogel (1999). Molecular shuttles: directed motion of microtubules slang nanoscale kinesin tracks. Nanotechnol., 10, pp. 232–236.CrossRefADSGoogle Scholar
  55. 55.
    H. Hess, J. Clemmens, D. Qin, J. Howard, and V. Vogel (2001). Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Letters, 1, pp. 235–239.CrossRefADSGoogle Scholar
  56. 56.
    H. Hess, C.M. Matzke, R.K. Doot, J. Clemmens, G.D. Bachand, B.C. Bunker, and V. Vogel (2003). Molecular shuttles operating undercover: A new photolithographic approach for the fabrication of structured surfaces supporting directed motility. Nano Letters, 3, pp. 1651–1655.CrossRefADSGoogle Scholar
  57. 57.
    Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, and T.Q. Uyeda (2001). Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks. Biophys. J., 81, pp. 1555–1561.CrossRefGoogle Scholar
  58. 58.
    L. Limberis and R.J. Stewart (2000). Toward kinesin-powered microdevices. Nanotechnol., 11, pp. 47–51.CrossRefADSGoogle Scholar
  59. 59.
    H. Suzuki, A. Yamada, K. Oiwa, H. Nakayama, and S. Mashiko (1997). Control of actin moving trajectory by patterned poly(methylmethacrylate) tracks. Biophys. J., 72, pp. 1997–2001.ADSCrossRefGoogle Scholar
  60. 60.
    D.C. Turner, C. Chang, K. Fang, S.L. Brandow, and D.B. Murphy (1995). Selective adhesion of functional microtubules to patterned silane surfaces. Bio-phys. J., 69, pp. 2782–2789.Google Scholar
  61. 61.
    H. Hess, G.D. Bachand, and V. Vogel (2004). Powering nanodevices with bio-molecular motors. Chemistry-a European Journal, 10, pp. 2110–2116.CrossRefGoogle Scholar
  62. 62.
    A. Månsson, M. Sundberg, R. Bunk, M. Balaz, I.A. Nicholls, P. Omling, J.O. Tegenfeldt, S. Tågerud, and L. Montelius (2005). Actin-based molecular motors for cargo transportation in nanotechnology — potentials and challenges. IEEE trans. Adv. Pack, 28, pp. 547–555.CrossRefGoogle Scholar
  63. 63.
    J. Clemmens, H. Hess, R. Lipscomb, Y. Hanein, K.F. Bohringer, C.M. Matzke, G.D. Bachand, B.C. Bunker, and V. Vogel (2003). Mechanisms of microtubule guiding on microfabricated kinesin-coated surfaces: Chemical and topographic surface patterns. Langmuir, 19, pp. 10967–10974.CrossRefGoogle Scholar
  64. 64.
    D.V. Nicolau, H. Suzuki, S. Mashiko, T. Taguchi, and S. Yoshikawa (1999). Actin motion on microlithographically functionalized myosin surfaces and tracks. Biophysical Journal, 77, pp. 1126–1134.CrossRefADSGoogle Scholar
  65. 65.
    J.A. Jaber, P.B. Chase, and J.B. Schlenoff (2003). Actomyosin-driven motility on patterned polyelectrolyte mono- and multilayers. Nano Letters, 3, pp. 1505–1509.CrossRefADSGoogle Scholar
  66. 66.
    F. Gittes, B. Mickey, J. Nettleton and J. Howard (1993). Flexural Rigidity of Microtubules and Actin-Filaments Measured from Thermal Fluctuations in Shape. Journal of Cell Biology, 120, pp. 923–934.CrossRefGoogle Scholar
  67. 67.
    A. Mansson, M. Sundberg, M. Balaz, R. Bunk, I.A. Nicholls, P. Omling, S. Tagerud, and L. Montelius (2004). In vitro sliding of actin filaments labelled with single quantum dots. Biochem. Biophys. Res. Commun., 314, pp. 529–534.CrossRefGoogle Scholar
  68. 68.
    D. Riveline, A. Ott, F. Julicher, D.A. Winkelmann, O. Cardoso, J.J. Lacapere, S. Magnusdottir, J.L. Viovy, L. Gorre-Talini, and J. Prost (1998). Acting on actin: the electric motility assay. Eur. Biophys. J., 27, pp. 403–408.CrossRefGoogle Scholar
  69. 69.
    M.S. Duxbury, S.W. Ashley, and E.E. Whang (2004). Inhibition of pancreatic adenocarcinoma cellular invasiveness by blebbistatin: A novel myosin II inhibitor. Biochem. Biophys. Res. Commun., 313, pp. 992–997.CrossRefGoogle Scholar
  70. 70.
    K.W. Wood, W.D. Cornwell, and J.R. Jackson (2001). Past and future of the mitotic spindle as an oncology target. Curr. Opin. Pharmacol, 1, pp. 370–377.CrossRefGoogle Scholar
  71. 71.
    S. Highsmith and D. Eden (1985). Transient electrical birefringence characterization of heavy meromyosin. Biochemistry, 24, pp. 4917–4924.CrossRefGoogle Scholar
  72. 72.
    A.F. Huxley (1974). Muscular contraction. J. Physiol. (Lond.), 243, pp. 1–43.Google Scholar
  73. 73.
    R.D. Vale and R.A. Milligan (2000). The way things move: looking under the hood of molecular motor proteins. Science, 288, pp. 88–95.CrossRefADSGoogle Scholar
  74. 74.
    M. Irving, St. Claire Allen, T., C. Sabido-David, J.S. Craik, Brandmeier, B., J. Kendrick-Jones, J.E. Corrie, D.R. Trentham, and Y.E. Goldman (1995). Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature, 375, pp. 688–691.CrossRefADSGoogle Scholar
  75. 75.
    A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka and T. Yanagida (1998). Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell, 92, pp. 161–171.CrossRefGoogle Scholar
  76. 76.
    I. R,ayment, H.M. Holden, M. Whittaker, C.B. Yohn, M. Lorenz, K.C. Holmes, and R.A. Milligan (1993a). Structure of the actin-myosin complex and its implications for muscle contraction. Science, 261, pp. 58–65.CrossRefADSGoogle Scholar
  77. 77.
    M. Sundberg, M. Balaz, R. Bunk, J. Rosengren-Holmberg, L. Montelius, IA. Nicholls, P. Omling, S. Tagerud and A. Månsson (2006). Selective spatial localization of actomyosin motor function by chemical surface patterning. Langmuir 22(17), 7302–7312.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • A. Månsson
    • 1
  • I.A. Nicholls
    • 1
  • P. Omling
    • 2
  • S. Tågerud
    • 1
  • L. Montelius
    • 2
  1. 1.School of Pure and Applied Natural SciencesUniversity of KalmarKalmarSweden
  2. 2.Division of Solid State Physics and The Nanometer ConsortiumUniversity of LundLundSweden

Personalised recommendations