NanoShuttles: Harnessing Motor Proteins to Transport Cargo in Synthetic Environments

  • V. Vogel
  • H. Hess
Part of the Lecture Notes in Physics book series (LNP, volume 711)


Motors have become a crucial commodity in our daily lives, from transportation to driving conveyor belts that enable the sequential assembly of cars and other industrial machines. For the sequential assembly of building blocks at the nanoscale that would not assemble spontaneously into larger functional systems, however, active transport systems are not yet available. In contrast, cells have evolved sophisticated molecular machinery that drives movement and active transport. Driven by the conversion of chemical into mechanical energy, namely through hydrolysis of the biological fuel ATP, molecular motors enable cells to operate far away from equilibrium by transporting organelles and molecules to designated locations within the cell, often against concentration gradients. Inspired by the biological concept of active transport, major efforts are underway to learn how to build nanoscale transport systems that are driven by molecular motors. Emerging engineering principles are discussed of how to build tracks and junctions to guide such nanoshuttles, how to load them with cargo and control their speed, how to use active transport to assemble mesoscopic structures that would otherwise not assemble spontaneously and what polymeric materials to choose to integrate motors into MEMS and other biohybrid devices. Finally, two applications that exploit the physical properties of microtubules are discussed, surface imaging by a swarm of microtubules and a self-assembled picoNewton force meter to probe receptor-ligand interactions.


Motor Protein Molecular Motor Persistence Length Kinesin Motor Active Transport System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.V. Balzani, A. Credi, F. M. Raymo, J.F. Stoddart (2000). Artificial Molecular Machines. Angew Chem Int Ed Engl, 39, pp. 3348–3391.CrossRefGoogle Scholar
  2. 2.
    A.M. Fennimore, T.D. Yuzvinsky, W.Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl (2003). Rotational actuators based on carbon nanotubes. Nature, 424, pp. 408–410.CrossRefADSGoogle Scholar
  3. 3.
    B.L. Feringa (2001). In control of motion: from molecular switches to molecular motors. Acc Chem Res, 34, pp. 504–513.CrossRefGoogle Scholar
  4. 4.
    G.S. Kottas, L.I. Clarke, D. Horinek, J. Michl (2005). Artificial molecular rotors. Chemical Reviews, 105, pp. 1281–1376.CrossRefGoogle Scholar
  5. 5.
    R.D. Vale, R.A. Milligan (2000). The way things move: looking under the hood of molecular motor proteins. Science, 288, pp. 88–95.CrossRefADSGoogle Scholar
  6. 6.
    J. Howard (2001). Mechanics of Motor Proteins and the Cytoskeleton. Sindauer, Sunderland, MA, p. 367Google Scholar
  7. 7.
    H. Hess, V. Vogel (2001). Molecular shuttles based on motor proteins: Active transport in synthetic environments. Reviews in Molecular Biotechnology, 82, pp. 67–85.CrossRefGoogle Scholar
  8. 8.
    J.R. Dennis, J. Howard, V. Vogel (1999). Molecular shuttles: directed motion of microtubules along nanoscale kinesin tracks. Nanotechnology, 10, pp. 232–236.CrossRefADSGoogle Scholar
  9. 9.
    H. Suzuki, K. Oiwa, A. Yamada, H. Sakakibara, H. Nakayama, S. Mashiko (1995). Linear arrangement of motor protein on a mechanically deposited fluo-ropolymer thin film. Jap. J. Appl. Phys. Part 1 34, pp. 3937–3941.CrossRefGoogle Scholar
  10. 10.
    R. Bunk, J. Klinth, L. Montelius, I.A. Nicholls, P. Omling, S. Tagerud, A. Mans-son (2003). Actomyosin motility on nanostructured surfaces. Biochem Biophys Res Commun, 301, pp. 783–788.CrossRefGoogle Scholar
  11. 11.
    R. Bunk, M. Sundberg, A. Mansson, I.A. Nicholls, P. Omling, S. Tagerud, L. Montelius (2005). Guiding motor-propelled molecules with nanoscale precision through silanized bi-channel structures. Nanotechnology, 16, pp. 710–717.CrossRefADSGoogle Scholar
  12. 12.
    L.J. Cheng, M.T. Kao, E. Meyhofer, L.J. Guo (2005). Highly efficient guiding of microtubule transport with imprinted CYTOP nanotracks. Small, 1, pp. 409–414.CrossRefGoogle Scholar
  13. 13.
    Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, T.Q. Uyeda (2001). Controlling the Direction of Kinesin-Driven Microtubule Movements along Microlitho-graphic Tracks. Biophys J, 81, pp. 1555–61.CrossRefGoogle Scholar
  14. 14.
    J.A. Jaber, P.B. Chase, J.B. Schienoff (2003). Actomyosin-Driven Motility on Patterned Polyelectrolyte Mono- and Multilayers. Nano Letters, 3, pp. 1505–1509.CrossRefADSGoogle Scholar
  15. 15.
    C. Mahanivong, J.P. Wright, M. Kekic, D.K. Pham, C. dos Remedios, D.V. Nicolau (2002). Manipulation of the motility of protein molecular motors on microfabricated substrates. Biomedical Microdevices, 4, pp. 111–116.CrossRefGoogle Scholar
  16. 16.
    P. Manandhar, L. Huang, J.R. Grubich, J.W. Hutchinson, P.B. Chase, S.H. Hong (2005). Highly selective directed assembly of functional actomyosin on Au surfaces. Langmuir, 21, pp. 3213–3216.CrossRefGoogle Scholar
  17. 17.
    S.G. Moorjani, L. Jia, T.N. Jackson, W.O. Hancock (2003). Lithographically Patterned Channels Spatially Segregate Kinesin Motor Activity and Effectively Guide Microtubule Movements. Nano Letters, 3, pp. 633–637.CrossRefADSGoogle Scholar
  18. 18.
    D.V. Nicolau, H. Suzuki, S. Mashiko, T. Taguchi, S. Yoshikawa (1999). Actin motion on microlithographically functionalized myosin surfaces and tracks. Biophys J, 77, pp. 1126–34.CrossRefGoogle Scholar
  19. 19.
    R.C. Lipscomb, J. Clemmens, Y. Hanein, M.R. Holl, V. Vogel, B.D. Ratner, D.D. Denton, K.F. Böhringer (2002). Controlled Microtubules Transport on Patterned Non-adhesive Surfaces Second International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology. IEEE, Madison, Wisconsin, pp. 21–26.Google Scholar
  20. 20.
    J. Clemmens, H. Hess, J. Howard, V. Vogel (2003a). Analysis of Microtubule Guidance in Open Microfabricated Channels Coated with the Motor Protein Kinesin. Langmuir, 19, pp. 1738–1744.CrossRefGoogle Scholar
  21. 21.
    H. Hess, J. Clemmens, D. Qin, J. Howard, V. Vogel (2001). Light-Controlled Molecular Shuttles Made from Motor Proteins Carrying Cargo on Engineered Surfaces. Nano Letters, 1, pp. 235–239.CrossRefADSGoogle Scholar
  22. 22.
    J. Clemmens, H. Hess, R. Doot, C.M. Matzke, G.D. Bachand, V. Vogel (2004). Motor-protein “roundabouts”: Microtubules moving on kinesin-coated tracks through engineered networks. Lab on a Chip, 4, pp. 83–86.CrossRefGoogle Scholar
  23. 23.
    J. Clemmens, H. Hess, R. Lipscomb, Y. Hanein, K.F. Boehringer, C.M. Matzke, G.D. Bachand, B.C. Bunker, V. Vogel (2003b). Principles of Microtubule Guiding on Microfabricated Kinesin-coated Surfaces: Chemical and Topographic Surface Patterns. Langmuir, 19, pp. 10967–10974.CrossRefGoogle Scholar
  24. 24.
    P. Stracke, K.J. Bohm, J. Burgold, H.J. Schacht, E. Unger (2000). Physical and technical parameters determining the functioning of a kinesin-based cell-free motor system. Nanotechnology, 11, pp. 52–56.CrossRefADSGoogle Scholar
  25. 25.
    S. Diez, J.H. Hellenius, J. Howard (2004). Biomolecular Motors operating in Engineered Environments. In: Niemeyer CM, Mirkin CA (eds.) Nanobiotechnology. Wiley-VCH, WeinheimGoogle Scholar
  26. 26.
    H. Hess, C.M. Matzke, R.K. Doot, J. Clemmens, G.D. Bachand, B.C. Bunker, V. Vogel (2003). Molecular Shuttles Operating Undercover: A New Photolithographic Approach for the Fabrication of Structured Surfaces Supporting Directed Motility. Nano Letters, 3, pp. 1651–1655.CrossRefADSGoogle Scholar
  27. 27.
    H. Hess, J. Clemmens, C.M. Matzke, G.D. Bachand, B.C. Bunker, V. Vogel (2002b). Ratchet patterns sort molecular shuttles. Appl Phys A, 75, pp. 309–313.CrossRefADSGoogle Scholar
  28. 28.
    M.G. van den Heuvel, C.T. Butcher, R.M. Smeets, S. Diez, C. Dekker (2005). High rectifying efficiencies of microtubule motility on kinesin-coated gold nanos-tructures. Nano Lett, 5, pp. 1117–1122.CrossRefADSGoogle Scholar
  29. 29.
    T. Nitta, H. Hess (2005). Dispersion in Active Transport by Kinesin-Powered Molecular Shuttles. Nano Letters web-released 10-Jun-05Google Scholar
  30. 30.
    F. Gittes, B. Mickey, J. Nettleton, J. Howard (1993). Flexural rigidity of mi-crotubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, pp. 923–934.CrossRefGoogle Scholar
  31. 31.
    N. Hirokawa, R. Takemura (2005). Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci, 6, pp. 201–14.CrossRefGoogle Scholar
  32. 32.
    S. Diez, C. Reuther, C. Dinu, R. Seidel, M. Mertig, W. Pompe, J. Howard (2003). Stretching and Transporting DNA Molecules Using Motor Proteins. Nano Letters, 3, pp. 1251–1254.CrossRefADSGoogle Scholar
  33. 33.
    G.D. Bachand, S.B. Rivera, A.K. Boal, J. Gaudioso, J. Liu, B.C. Bunker (2004). Assembly and transport of nanocrystal CdSe quantum dot nanocomposites using microtubules and kinesin motor proteins. Nano Letters, 4, pp. 817–821.CrossRefADSGoogle Scholar
  34. 34.
    A. Mansson, M. Sundberg, M. Balaz, R. Bunk, I.A. Nicholls, P. Omling, S. Tagerud, L. Montelius (2004). In vitro sliding of actin filaments labelled with single quantum dots. Biochemical and Biophysical Research Communications, 314, pp. 529–534.CrossRefGoogle Scholar
  35. 35.
    M. Bachand, A.M. Trent, B.C. Bunker, G.D. Bachand (2005). Physical factors affecting kinesin-based transport of synthetic nanoparticle cargo. Journal of Nanoscience and Nanotechnology, 5, pp. 718–722.CrossRefGoogle Scholar
  36. 36.
    G. Muthukrishnan, C.A. Roberts, Y.C. Chen, J.D. Zahn, W.O. Hancock (2004). Patterning surface-bound microtubules through reversible DNA hybridization. Nano Letters, 4, pp. 2127–2132.CrossRefADSGoogle Scholar
  37. 37.
    K.A. Kato, R. Goto, K. Katoh, M. Shibakami (2005). Microtubule-cyclodextrin conjugate: Functionalization of motile filament with molecular inclusion ability. Bioscience Biotechnology and Biochemistry, 69, pp. 646–648.CrossRefGoogle Scholar
  38. 38.
    H. Hess, J. Clemmens, C. Brunner, R. Doot, S. Luna, K.-H. Ernst, V. Vogel (2005)Molecular self-assembly of “Nanowires” and “Nanospools” using active transport. Nano Letters, 5, pp. 629–633.CrossRefADSGoogle Scholar
  39. 39.
    Y.-Z. Du, Y. Hiratsuka, S. Taira, M. Eguchi, T.Q.P. Uyeda, N. Yumoto, M. Kodaka (2005). Motor protein nano-biomachine powered by self-supplying ATP. Chemical Communications, 16, pp. 2080–2082.CrossRefGoogle Scholar
  40. 40.
    C. Brunner, H. Hess, K.-H. Ernst, V. Vogel (2004). Lifetime of biomolecules in hybrid nanodevices. Nanotechnology, 15, pp. S540–S548CrossRefADSGoogle Scholar
  41. 41.
    H. Hess, J. Clemmens, J. Howard, V. Vogel (2002a). Surface Imaging by Self-Propelled Nanoscale Probes. Nano Letters, 2, pp. 113–116.CrossRefADSGoogle Scholar
  42. 42.
    H. Hess, J. Howard, V. Vogel (2002c). A Piconewton Forcemeter assembled from Microtubules and Kinesins. Nano Letters, 2, pp. 1113–1115.CrossRefADSGoogle Scholar
  43. 43.
    J.L. Bull, A.J. Hunt, E. Meyhofer (2005). A theoretical model of a molecular-motor-powered pump. Biomedical Microdevices, 7, 21–33.CrossRefGoogle Scholar
  44. 44.
    H. Clausen-Schaumann, M. Seitz, R. Krautbauer, H.E. Gaub (2000). Force spec-troscopy with single bio-molecules. Curr Opin Chem Biol, 4, pp. 524–530.CrossRefGoogle Scholar
  45. 45.
    E. Evans (2001). Probing the relation between force-lfetime-and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct, 30, pp. 105–128.CrossRefGoogle Scholar
  46. 46.
    R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans (1999). Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature, 397, pp. 50–3.CrossRefADSGoogle Scholar
  47. 47.
    S.T. Brady (1985). A novel brain ATPase with properties expected for the fast axonal transport motor. Nature, 317, pp. 73–75.CrossRefADSGoogle Scholar
  48. 48.
    R.D. Vale, T.S. Reese, M.P. Sheetz (1985). Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell, 42, pp. 39–50.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • V. Vogel
    • 1
  • H. Hess
    • 2
  1. 1.Department of MaterialsSwiss Federal Institute of Technology (ETH)ZürichSwitzerland
  2. 2.Department of Materials Science and EngineeringUniversity of FloridaUSA

Personalised recommendations