Tuning Ion Current Rectification in Synthetic Nanotubes

  • Z.S. Siwy
  • C.R. Martin
Part of the Lecture Notes in Physics book series (LNP, volume 711)


We prepared and studied ion current rectifiers consisting of single asymmetric nanotubes in polymer films. The small opening is as small as several nanometers, while the big opening is in the micrometer range. We fabricated two nanotube systems, which exhibit ion current rectification through two distinct mechanisms (i) electrostatic interactions, based on asymmetric shape of electrostatic potential inside the pore, and (ii) electro-mechanical gate placed at the entrance of a conical pore, responsive to the external field applied across the membrane. Biosensors consisting of single conical nanotubes are discussed as well.


Pore Wall High Electrolyte Concentration Gold Tube Bulk Etch Rate Conical Pore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA, 93, pp. 13770–13773.CrossRefADSGoogle Scholar
  2. 2.
    M. Akeson, D. Branton, J.J. Kasianowicz, E. Brandin, D.W. Deamer (1999). Microsecond Time-Scale Discrimination Among Polycytidylic Acid, Polyadenylic Acid, and Polyuridylic Acid as Homopolymers or as Segments Within Single RNA Molecules. Biophys. J., 77, pp. 3227–3233.CrossRefGoogle Scholar
  3. 3.
    J. Li, D. Stein, C. McMullan, D. Branton, M.J. Aziz, J.A. Golovchenko (2001). Ion-beam sculpting at nanometer length scales. Nature, 412, pp. 166–169.CrossRefADSGoogle Scholar
  4. 4.
    J. Li, M. Gershow, D. Stein, E. Brandin, J.A. Golovchenko (2003). DNA molecules and configurations in a solidstate nanopore microscope. Nature Materials, 2, pp. 611–615.CrossRefADSGoogle Scholar
  5. 5.
    S. Kuyucak, O.S. Andersen, S.-H. Chung (2001). Model of permeation in ion channels. Rep. Prog. Phys., 64, pp. 1427–1472.CrossRefADSGoogle Scholar
  6. 6.
    D. Stein, M. Kruithof, C. Dekker (2004). Surface-Charge-Governed Ion Transport in Nanofluidic Channels. Phys. Rev. Lett., 93, pp. 035901/1–035901/4.CrossRefADSGoogle Scholar
  7. 7.
    W. Nonner, D.P. Chen, B. Eisenberg (1999). Progress and prospects in permeation. J. Gen. Physiol, 113, pp. 773–782.CrossRefGoogle Scholar
  8. 8.
    The Cell -A Molecular Approach, 2nd ed. G.M. Cooper (Sunderland (MA): Sinauer Associates, Inc. 2000) pp. 81–84, 476–491.Google Scholar
  9. 9.
    B. Hille (1992). Ionic Channels of Excitable Membranes (Sinauer, Sunderland, MA), 2nd ed.Google Scholar
  10. 10.
    M. Nishida, R. MacKinnon (2002). Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution. Cell, 111, pp. 957–965.CrossRefGoogle Scholar
  11. 11.
    R.L. Fleischer, P.B. Price, R.M. Walker (1975). Nuclear Tracks in Solids. Principles and Applications (Univ. of California Press, Berkeley).Google Scholar
  12. 12.
    R. Spohr. Methods and device to generate a predetermined number of ion tracks, German Patent DE 2951376 C2 (1983); United States Patent No. 4369370 (1983).Google Scholar
  13. 13.
    D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon (1998). The Structure of the Potassium Channel: Molecular Basis of K1 Conduction and Selectivity. Science, 280, pp. 69–77.CrossRefADSGoogle Scholar
  14. 14.
    Y. Jiang, A. Lee, J. Chen, M. Cadene, B.T. Chait, R. MacKinnon (2002). Crystal structure and mechanism of a calcium-gated potassium channel. Nature, 417, pp. 515–522.CrossRefADSGoogle Scholar
  15. 15.
    Y. Jiang, V. Ruta, J. Chen, A. Lee, R. MacKinnon (2003). The principle of gating charge movement in a voltage-dependent K+ channel. Nature, 423, pp. 42–48.CrossRefADSGoogle Scholar
  16. 16.
    Z. Siwy, A. Fulinski (2002). Fabrication of a Synthetic Nanopore Ion Pump. Phys. Rev. Lett., 89, pp. 158101/1–158101/4.ADSGoogle Scholar
  17. 17.
    Z. Siwy, Y. Gu, H.A. Spohr, D. Baur, Wolf-Reber A, R. Spohr, P. Apel, Y.E. Korchev (2002). Rectification and voltage gating of ion currents in a nanofabricated pore. Europhys. Lett., 60, pp. 349–355.CrossRefADSGoogle Scholar
  18. 18.
    M. Nishizawa, V.P. Menon, C.R. Martin (1995). Metal Nanotube Membrane with Electrochemically Switchable Ion-Transport Selectivity. Science, 268, pp. 700–702.CrossRefADSGoogle Scholar
  19. 19.
    P. Apel, Y.E. Korchev, Z. Siwy, R. Spohr, M. Yoshida (2001). Diode-like singleion track membrane prepared by electro-stopping. Nucl. Instr. Meth. B, 184, pp. 337–346.CrossRefADSGoogle Scholar
  20. 20.
    Z. Siwy, P. Apel, D. Baur, D. Dobrev, Y.E. Korchev, R. Neumann, R. Spohr, C. Trautmann, K. Voss (2003). Preparation of synthetic nanopores with transport properties analogues to biological channels. Surface Science 532–535: 1061–1066.CrossRefGoogle Scholar
  21. 21.
    Z. Siwy, D.D. Dobrev, R. Neumann, C. Trautmann, K. Voss (2003). Electro responsive asymmetric nanopores in polyimide with stable ion-current signal. Applied Physics A, 76, pp. 781–785.CrossRefGoogle Scholar
  22. 22.
    Z. Siwy, A. Apel, D.D. Dobrev, R. Neumann, R. Spohr, C. Trautmann, K. Voss (2003). Ion transport through asymmetric nanopores prepared by ion track etching. Nucl. Instr. Meth. B, 208, pp. 143–148.CrossRefADSGoogle Scholar
  23. 23.
    S.M. Bezrukov, I. Vodyanoy, A.V. Parsegian (1994). Counting polymers moving through a single ion channel. Nature, 370, pp. 279–281.CrossRefADSGoogle Scholar
  24. 24.
    S.J. Kuga (1981). Pore size distribution analysis of gel substances by size exclusion chromatography. J. Chromatogr., 206, pp. 449–461.CrossRefGoogle Scholar
  25. 25.
    Spohr R. (1990). Ion Tracks and Microtechnology. Principles Applications and Friedr. (Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig).Google Scholar
  26. 26.
    A. Wolf, N. Reber, P.Y. Apel, B.E. Fischer, R. Spohr (1995). Electrolyte transport in charged single ion track capillaries. Nucl. Instr. Meth. B, 105, pp. 291–293.CrossRefADSGoogle Scholar
  27. 27.
    J. March (1968). Advanced Organic Chemistry: Reactions, Mechanisms, Structure and (McGraw-Hill Book Company, New York), p. 313.Google Scholar
  28. 28.
    Wolf-Reber A (2002). Aufbau eines Rasterionenleitwertmikroskops. Stromfluktuationen in Nanoporen, PhD dissertation, ISBN 3–89825.-490–9, Scholar
  29. 29. Scholar
  30. 30. Scholar
  31. 31.
    L.E. Ermakova, M.P. Sidorova, M.E. Bezrukova (1998). Filtration and electroki-netic characteristics of track membranes. J. Colloid., 52, pp. 705–712.Google Scholar
  32. 32.
    Z. Siwy (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Func. Mat. 16, pp. 735–746.CrossRefGoogle Scholar
  33. 33.
    C.R. Martin, M. Nishizawa, K. Jirage, M. Kang, S.B. Lee (2001). Controlling Ion-Transport Selectivity in Gold Nanotubule Membranes. Adv. Mat., 13, pp. 1351–1362.CrossRefGoogle Scholar
  34. 34.
    C.C. Harrell, S.B. Lee, C.R. Martin (2003). Synthetic Single-Nanopore and Nanotube Membranes. Anal. Chem., 75, pp. 6861–6867.CrossRefGoogle Scholar
  35. 35.
    J. Israelachvili (1991) Intermolecular and Surface Forces (2nd Ed., Academic Press, London).Google Scholar
  36. 36.
    P. Hänggi and R. Bartussek. Brownian rectifiers: How to convert Brownian motion into directed transport. In Nonlinear Physics of Complex Systems, edited by J. Parisi, S.C. Müller, W. Zimmermann (Springer, Berlin, 1997), 476, pp. 294–308.Google Scholar
  37. 37.
    R.D. Astumian (1997). Thermodynamics and Kinetics of a Brownian Motor. Science 276, pp. 917–922.CrossRefGoogle Scholar
  38. 38.
    Z. Siwy, E. Heins, C.C. Harreil, P. Kohli, C.R. Martin (2004). Conical-Nanotube Ion-Current Rectifiers: The R,ole of Surface Charge. J. Am. Chem. Soc., 126, pp. 10850–10851.CrossRefGoogle Scholar
  39. 39.
    K.B. Jirage, J.C. Hulteen, C.R. Martin (1997). Nanotubule-Based Molecular-Filtration Membranes. Science, 278, pp. 655–658.CrossRefADSGoogle Scholar
  40. 40.
    I.D. Kosiñska and A. Fulinski (2005). Asymmetric nanodifussion. Phys. Rev. E, 72, p. 011201 (1–7).ADSCrossRefGoogle Scholar
  41. 41.
    A. Ulman (1996). Formation and Structure of Self-Assembled Monolayers. Chem. Rev., 96, pp. 1533–1554.CrossRefGoogle Scholar
  42. 42.
    C.C. Harrell, P. Kohli, Z. Siwy, C.R. Martin (2004). DNA -Nanotube Artificial Ion Channels. J. Am. Chem. Soc., 126, pp. 15646–15647.CrossRefGoogle Scholar
  43. 43.
    G.M. Cooper, Hausman R.E. The Cell. A Molecular Approach. 3rd Ed. (Sinauer Associates, Inc. Sunderland, Massachusetts, 2004).Google Scholar
  44. 44.
    A. Yarnell (2004). Conflicting research findings on the mechanism of voltage-gating in K+ channels has caused controversy. Chem. Eng. News, 82, pp. 35–36.Google Scholar
  45. 45.
    R.O. Blaustein, C. Miller (2004). Ion channels: Shake, rattle or roll? Nature, 427, pp. 499–501.CrossRefADSGoogle Scholar
  46. 46.
    T. Hessa, S.H. White, von Heijne G. (2005). Membrane Insertion of a Potassium-Channel Voltage Sensor. Science, 307, p. 1427.CrossRefGoogle Scholar
  47. 47.
    Z. Siwy, Q. Trofin, P. Kohli, L.A. Baker, C. Trautmann, C.R. Martin (2005) Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. J. Am. Chem. Soc., 127, p. 5000.CrossRefGoogle Scholar
  48. 48.
    L. Movileanu, S. Howorka, O. Braha, H. Bayley (2000) Detecting protein an-alytes that modulate transmembrane movement of a polymer chain within a single protein pore Nat. Biotechnol, 18, pp. 1091–1095.CrossRefGoogle Scholar
  49. 49.
    W.A. Hendrickson, A. Pahler, J.L. Smith, Y. Satow, E.A. Merritt, R.P. Phiza-ckerly (1989). Crystal structure of core streptdavidin determined from multi-wavelength anomalous diffraction of synchrotron radiation. Proc. Nati. Acad. Sci. USA, 86, pp. 2190–2194.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Z.S. Siwy
    • 1
    • 2
  • C.R. Martin
    • 3
  1. 1.Department of Physics and AstronomyUniversity of CaliforniaIrvine
  2. 2.Department of ChemistrySilesian University of TechnologyGliwicePoland
  3. 3.Department of ChemistryUniversity of FloridaGainesville

Personalised recommendations