Using DNA to Power the Nanoworld

  • B. Yurke
Part of the Lecture Notes in Physics book series (LNP, volume 711)


The simplicity of the rules by which DNA strands interact has allowed the construction, out of DNA, of complex nanodevices that can execute motion. These devices possess DNA-based molecular motors that are powered by DNA strands that serve as fuel. Among the variety of such devices constructed are ones that can direct chemical synthesis, that can control the properties of bulk materials, and that can control the binding of chemical species to protein molecules. This suggests that DNA-based nanodevices powered by DNA-based molecular motors may find application in fields such as chemistry, materials science, and medicine. Here we describe the principles by which the motors that power these devices work and survey the range of devices that have been constructed.


Branch Point Double Helix Base Sequence Molecular Motor Motor Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Balzani, A. Credi, F.M. Raymo, and J.F. Stoddart (2000). “Artifical molecular machines,” Angew. Chem. Int. Ed., 39, p. 3348.CrossRefGoogle Scholar
  2. 2.
    T.R. Kelly, H. De Silva, and R.A. Silva (1999). “Unidirectional rotary motion in a molecular system,” Nature, 401, p. 150.CrossRefADSGoogle Scholar
  3. 3.
    N. Koumura, R.W.J. Zijlstra, R.A. van Delden, N. Harada, and B.L. Feringa (1999). “Light-driven monodirectional molecular rotor,” Nature, 401, p. 152.CrossRefADSGoogle Scholar
  4. 4.
    A.M. Brouwer, C. Frochot, F.G. Gatti, D.A. Leigh, L. Mottier, F. Paolucci, S. Roffia, G.W.H. Wurpel (2001). “Photoinduction of fast reversible translational motion in a hydrogen-bonded molecular shuttle,” Science, 291, p. 2124.CrossRefADSGoogle Scholar
  5. 5.
    J.V. Hernández, E.R. Kay, and D.A. Leigh (2004). “A Reversible Synthetic Rotary Molecular Motor,” Science, 306, p. 1532.CrossRefADSGoogle Scholar
  6. 6.
    C.M. Niemeyer and M. Adler (2002). “Nanomechanical devices based on DNA,” Angew. Chem. Int. Ed., 41, p. 3779.CrossRefGoogle Scholar
  7. 7.
    B. Yurke, A.J. Turberfield, A.P. Mills, Jr., F.C. Simmel, and J.L. Neumann (2000). “A DNA-fuelled molecular machine made of DNA,” Nature, 406, p. 605.CrossRefADSGoogle Scholar
  8. 8.
    F.C. Simmel and B. Yurke (2001). “Using DNA to construct and power a nanoactuator,” Phys. Rev. E, 63, p. 041913.CrossRefADSGoogle Scholar
  9. 9.
    F.C. Simmel and B. Yurke (2002). “A DNA-based molecular device switchable between three distinct mechanical states,” Appl. Phys. Lett., 80, p. 883.CrossRefADSGoogle Scholar
  10. 10.
    J.C. Mitchell and B. Yurke, “DNA scissors,” in DNA Based Computers VII, No. 2340 in LNCS, edited by N. Jonoska and N.C. Seeman (Springer Verlag, Heidelberg, 2002).Google Scholar
  11. 11.
    H. Yan, X. Zhang, Z. Shen, and N.C. Seeman (2002). “A robust DNA mechanical device controlled by hybridization topology,” Nature, 415, p. 62.CrossRefADSGoogle Scholar
  12. 12.
    A.J. Turberfield, J.C. Mitchell, B. Yurke, A.P. Mills, Jr., M.I. Blakey, and F.C. Simmel (2003). “DNA fuel for free-running nanomachines,” Phys. Rev. Lett., 90, p. 118102.CrossRefADSGoogle Scholar
  13. 13.
    J.J. Li and W. Tan (2002). “A single DNA molecule nanomotor,” Nano Lett., 2, p. 315.CrossRefADSGoogle Scholar
  14. 14.
    L. Feng, S.H. Park, J.H. Reif, and H. Yan (2003). “A two-state DNA lattice switched by DNA nanoactuator,” Angew. Chem. Int. Ed., 42, p. 4342.CrossRefGoogle Scholar
  15. 15.
    P. Alberti and J.L. Mergny (2003). “DNA duplex-quadruplex exchange as the basis for a nanomolecular machine,” Proc. Natl. Acad. Sci. U.S.A., 100, p. 1569.CrossRefADSGoogle Scholar
  16. 16.
    W.U. Dittmer, A. Reuter, and F.C. Simmel (2004). “A DNA-based machine that can cyclically bind and release thrombin,” Angew. Chem. Int. Ed., 43, p. 3549.CrossRefGoogle Scholar
  17. 17.
    S.P. Liao and N.C. Seeman (2004). “Translation of DNA signals into polymer assembly instructions,” Science, 306, p. 2072.CrossRefADSGoogle Scholar
  18. 18.
    W.B. Sherman and N.C. Seeman (2004). “A precisely controlled DNA biped walking device,” Nano Letters, 4, p. 1203.CrossRefADSGoogle Scholar
  19. 19.
    J.S. Shin and N.A. Pierce (2004). “A synthetic DNA walker for molecular transport,” J. Am. Chem. Soc., 126, P. 10834.CrossRefGoogle Scholar
  20. 20.
    N.C. Seeman (2003). “DNA in a material world,” Nature, 421, p. 427.CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    E. Winfree, F. Liu, L.A. Wenzler, and N. Seeman (1998). “Design and selfassembly of two-dimensional DNA crystals,” Nature, 394, p. 539.CrossRefADSGoogle Scholar
  22. 22.
    C. Mao, W. Sun, and N.C. Seeman (1999). “Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy,” J. Am. Chem. Soc., 121, p. 5437.CrossRefGoogle Scholar
  23. 23.
    H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, and T.H. LaBean (2003). “DNA-templated self-assembly of protein arrays and highly conductive nanowires,” Science, 301, p. 1882.CrossRefADSGoogle Scholar
  24. 24.
    A. Chworos, I. Severcan, A.Y. Koyfman, P. Weinkam, E. Oroudjev, H.G. Hansma, and L. Jaeger (2004). “Building Programmable Jigsaw Puzzles with RNA,” Science, 306, p. 2068.CrossRefADSGoogle Scholar
  25. 25.
    P. W. K. Rothemund, N. Papadakis, and E. Winfree (2004). “Algorithmic self-assembly of DNA Sierpinski triangles,” PLoS Biology, 2, p. 2041.CrossRefGoogle Scholar
  26. 26.
    P.W.K. Rothemund, A. Ekani-Nkodo, N. Papadakis, A. Kumar, D.K. Fygenson, and E. Winfree (2004). “Design and characterization of programmable DNA nanotubes,” J. Am. Chem. Soc., 126, p. 16344.CrossRefGoogle Scholar
  27. 27.
    C. Bustamante, Z. Bryant, and S. B. Smith (2003). “Ten years of tension: single-molecule DNA mechanics,” Nature, 421, p. 423.CrossRefADSGoogle Scholar
  28. 28.
    B. Tinland, A. Pluen, J. Sturm, and G. Weill (1997). “Persistence length of single-stranded DNA,” Macromolecules, 30, p. 5763.CrossRefADSGoogle Scholar
  29. 29.
    J. SantaLucia, Jr. (1998). “A unified view of polymer, dumbbell, and oligonu-cleotide DNA nearest-neighbor thermodynamics,” Proc. Natl. Acad. Sci. USA, 95, p. 1460.CrossRefADSGoogle Scholar
  30. 30.
    E. Essevaz-Roulet, U. Bockelmann, and F. Heslot (1997). “Mechanical separation of the complementary strands of DNA,” Proc. Nat. Acad. Sci. USA, 94, p. 11935.CrossRefADSGoogle Scholar
  31. 31.
    M. Rief, H. Clausen-Schaumann, and H.E. Gaub (1999). “Sequence-dependent mechanics of single DNA molecules,” Nature Struct. Biol., 6, p. 346.CrossRefGoogle Scholar
  32. 32.
    J. Liphardt, B. Onoa, S. B. Smith, I. Tinoco, Jr., and C. Bustamante (2001). “Reversible unfolding of single RNA molecules by mechanical force,” Science, 292, p. 733.CrossRefADSGoogle Scholar
  33. 33.
    K. Visscher, M.J. Schnitzer, and S.M. Block (1999). “Single kinesin molecules studied with a molecular force clamp,” Nature, 400, p. 184.CrossRefADSGoogle Scholar
  34. 34.
    M.D. Wang, M.J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S.M. Block, (1998). “Force and velocity measured for single molecules of RNA polymerase,” Science, 282, p. 902.CrossRefADSGoogle Scholar
  35. 35.
    L.P. Reynaldo, A.V. Vologodskii, B.P. Neri, and V.L. Lyamichev (2000). “The kinetics of oligonucleotide replacements,” J. Mol. Biol., 297, p. 511.CrossRefGoogle Scholar
  36. 36.
    B. Yurke and A.P. Mills, Jr. (2003). “Using DNA to power nanostructures,” Genet. Program. Evol. Mach., 4, p. 111.CrossRefGoogle Scholar
  37. 37.
    C.M. Radding, K.L. Beattie, W.K. Holloman, and R.C. Wiegand (1977). “Uptake of homologous single-stranded fragments by superhelical DNA. IV. Branch migration,” J. Mol. Biol, 116, p. 825.CrossRefGoogle Scholar
  38. 38.
    C. Green and C. Tibbetts (1981). “Reassociation rate limited displacement of DNA,” Nucl. Acids Res., 9, p. 1905.CrossRefGoogle Scholar
  39. 39.
    E.A. Jares-Erijman and T.M. Jovin (2003). “FRET imaging,” Nature Biotechnology, 21, p. 1387.CrossRefGoogle Scholar
  40. 40.
    D.R., Halpin and P.B. Harbury (2004). “DNA display I. Sequence-encoded routing of DNA populations,” PLoS Biology, 2, p. 1015.Google Scholar
  41. 41.
    D. C. Lin, B. Yurke, and N. A. Langrana (2005). “Inducing reversible stiffness changes in DNA-crosslinked gels,” J. Materials Research, 20, p. 1456.CrossRefADSGoogle Scholar
  42. 42.
    E.J. Semler and P.V. Moghe (2001). “Engineering hepatocyte functional fate through growth factor dynamics: the role of cell morphologic priming,” Biotechnol. Bioeng., 75, p. 510.CrossRefGoogle Scholar
  43. 43.
    E.J. Semler, C.S. Ranucci, and P.V. Moghe (2000). “Mechanochemical manipulation of hepatocyte aggregation can selectively induce or repress liver-specific function,” Biotechnol. Bioeng., 69, p. 359.CrossRefGoogle Scholar
  44. 44.
    Y. Chen, M.S. Wang, and C.D. Mao (2004). “An autonomous DNA nanomotor powered by a DNA enzyme,” Angew. Chem. Int. Ed., 43, p. 3554.CrossRefGoogle Scholar
  45. 45.
    M.N. Stojanovic (2005). “Agile and Intelligent DNA Molecules,” presented at the “Engineering a DNA World” workshop at the California Institute of Technology, January, pp. 6–8.Google Scholar
  46. 46.
    J. Bath, S.J. Green, and A.J. Turberfield (2005). “A free-running DNA motor powered by a nicking enzyme,” Andgew. Chem. Int. Ed., 44, p. 4358.CrossRefGoogle Scholar
  47. 47.
    P. Yin, H. Yan, X.G. Daniell, A.J. Turberfield, and J.H. Reif (2004). “A unidirectional DNA walker that moves autonomusly along a track,” Andgew. Chem. Int. Ed., 43, p. 4906.CrossRefGoogle Scholar
  48. 48.
    C. Mao, W. Sun, Z. Shen, and N.C. Seeman (1999). “A nanomechanical device based on the B-Z transition of DNA,” Nature, 397, p. 144.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • B. Yurke
    • 1
  1. 1.Bell LaboratoriesMurray Hill

Personalised recommendations