Skip to main content

Artificial Dipolar Molecular Rotors

  • Chapter
Controlled Nanoscale Motion

Part of the book series: Lecture Notes in Physics ((LNP,volume 711))

Abstract

Rotors are present in almost every macroscopic machine, converting rotational motion into energy of other forms, or converting other forms of energy into rotation. Rotation may be transmitted via belts or gears, converted into linear motion by various linkages, or used to drive propellers to produce fluid motion. Examples of macroscopic rotors include engines which couple to combustible energy sources, windmills which couple to air flows, and most generators of electricity. A key feature of these objects is the presence of a part with rotational freedom relative to a stationary frame. In this chapter we discuss the miniaturization of rotary machines all the way to the molecular scale, where chemical groups form the rotary and stationary parts. For a recent review of molecules with rotary and stationary parts see [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.S. Kottas, L.I. Clarke, D. Horinek, and J. Michl (2005).Chem. Rev., 105, p. 1281.

    Article  Google Scholar 

  2. T.R. Kelly, H. De Silva, and R.A. Silva (1999). Nature, 401, p. 150.

    Article  ADS  Google Scholar 

  3. N. Koumura, R.W.J. Zijlstra, R.A. van Delden, N. Harada, and B.L. Feringa (1999). Nature, 401, p. 152.

    Article  ADS  Google Scholar 

  4. D.A. Leigh, J.K.Y. Wong, F. Dehez, and F. Zerbetto (2003). Nature, 424, p. 174.

    Article  ADS  Google Scholar 

  5. J.V. Hernández, E.R. Kay, and D.A. Leigh (2004). Science, 306, p. 1532.

    Article  ADS  Google Scholar 

  6. S.P. Fletcher, F. Dumur, M.M. Pollard, and B.L. Feringa (2005). Science 310, p. 80.

    Article  ADS  Google Scholar 

  7. L.I. Clarke, D. Horinek, G.S. Kottas, N. Varaska, T.F. Magnera, T.P. Hinderer, R.D. Horansky, J. Michl, and J.C. Price (2002). Nanotechnology, 13, p. 533.

    Article  ADS  Google Scholar 

  8. R.D. Horansky, L.I. Clarke, T.-A.V. Khuong, P.D. Jarowski, M.A. Garcia Garibay, and J.C. Price (2005). Phys. Rev. B, 72, p. 014302.

    Article  ADS  Google Scholar 

  9. X. Zheng, M.E. Mulcahy, D. Horinek, F. Galeotti, T.F. Magnera, and J. Michl, (2004). J. Amer. Chem. Soc., 126, p. 4540.

    Article  Google Scholar 

  10. V.M. Rozenbaum (1996). Phys. Rev. B, 53, p. 6240.

    Article  ADS  Google Scholar 

  11. J. de Jonge, M. Ratner, and R.S.S.W. de Leeuw (2004). J. Phys. Chem. B, 108, p. 2666.

    Article  Google Scholar 

  12. V.M. Rozenbaum, V.M. Ogenko, and A.A. Chuiko (1991). Sov. Phys. Usp., 34, p. 883.

    Article  ADS  Google Scholar 

  13. J. Vacek and J. Michl (2001). Proc. Natl. Acad. Sci. USA, 98, p. 5481.

    Article  ADS  Google Scholar 

  14. D. Horinek and J. Michl (2003). J. Amer. Chem. Soc., 125, p. 11900.

    Article  Google Scholar 

  15. U. Burkert and N.L. Allinger (1982). ACS Monograph, No. 177: Molecular Mechanics (ACS, Washington D.C. ).

    Google Scholar 

  16. G.S. Kottas (2004). Ph.D. Dissertation, University of Colorado at Boulder.

    Google Scholar 

  17. D. Horinek and J. Michl, Proc. Natl. Acad. Sci. USA, in press.

    Google Scholar 

  18. D.A. Bonnell (1993). Ed. Scanning Tunneling Microscopy and Spectroscopy Theory, Techniques and Applications (VCH Publishers, New York).

    Google Scholar 

  19. A. Sakai (2000). In: Advances in Materials Reasearch: Advances in Scanning Probe Microscopy edited by T. Sakurai and Y. Watanabe (Springer-Verlag, New York), p. 143.

    Google Scholar 

  20. Y. Hasegawa, J.F. Jia, T. Sakurai, Z.Q. Li, K. Ohno, and Y. Kawazoe (2000). In: Advances in Materials Reasearch: Advances in Scanning Probe Microscopy edited by T. Sakurai and Y. Watanabe (Springer-Verlag, New York), p. 167.

    Google Scholar 

  21. J.A. Appelbaum and D.R. Hamann (1972). Phys. Rev. B, 6, p. 1122.

    Article  ADS  Google Scholar 

  22. L. Wang and J. Hermans (1995). J. Phys. Chem., 99, p. 12001.

    Article  Google Scholar 

  23. E.G. d’Agliano, P. Kumar, W. Schaich, and H. Suhl (1975). Phys. Rev. B, 11, p. 2122.

    Article  ADS  Google Scholar 

  24. K. Schönhammer and O. Gunnarson (1980). Phys. Rev. B, 22, p. 1629.

    Article  ADS  Google Scholar 

  25. Y. Li and G. Wahnström (1992). Phys. Rev. Lett, 68, p. 3444.

    Article  ADS  Google Scholar 

  26. R.D. Astumian (1996). J. Phys. Chem., 100, p. 19075.

    Article  Google Scholar 

  27. P. Reimann (2002). Phys. Rep., 57, p. 361.

    MathSciNet  Google Scholar 

  28. Y.A. Makhnovskii, V.M. Rozenbaum, D.-Y. Yang, S.H. Lin, and T.Y. Tsong (2004). Phys. Rev. E, 69, p. 021102.

    Article  ADS  Google Scholar 

  29. R.D. Astumian (2005). Proc. Natl. Acad. Sci. USA, 102, p. 1843.

    Article  ADS  Google Scholar 

  30. J.V. José and E.J. Saletan (1998). Classical dynamics: a contemporary approach (Cambridge University Press, New York), p. 382 ff.

    MATH  Google Scholar 

  31. E.V. Chirikov (1979). Phys. Rep., 52, p. 265.

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Roberts (1990). Ed. Langmuir-Blodgett Films (Plenum Press, New York).

    Google Scholar 

  33. F. MacRitchie (1990). Chemistry at Interfaces (Academic Press, San Diego).

    Google Scholar 

  34. T.F. Magnera and J. Michl (2002). Proc. Nat. Acad. Sci. USA, 99, p. 4788.

    Article  ADS  Google Scholar 

  35. N. Varaksa, L. Pospíšil, T.F. Magnera, and J. Michl (2002). Proc. Nat. Acad. Sci. USA, 99, p. 5012.

    Article  ADS  Google Scholar 

  36. Z. Dominguez, H. Dang, M.J. Strouse, and M.A. Garcia-Garibay (2002). J. Amer. Chem. Soc., 124, p. 7719.

    Article  Google Scholar 

  37. Z. Dominguez, T.-A. V. Khuong, H. Dang, C.N. Sanrame, J.E. Nuñez, and M.A. Garcia-Garibay (2003). J. Amer. Chem. Soc., 125, p. 8827.

    Article  Google Scholar 

  38. R.D. Horansky, L.I. Clarke, E.B. Winston, S. Karlen, M.A. Garcia-Garibay, and J.C. Price (unpublished).

    Google Scholar 

  39. W. Press (1981). Single-Particle Rotations in Molecular Crystals (Springer Verlag, Berlin).

    Book  Google Scholar 

  40. F. Reif (1965). Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York).

    Google Scholar 

  41. N.W. McLachlan (1947). Theory and Application of the Mathieu Function (Clarendon, Oxford).

    Google Scholar 

  42. A.J. Legget, in (1986). Directions in Condensed Matter Physics, edited by G. Grinstein and G. Mazenko (World Scientific, Singapore), p. 187.

    Google Scholar 

  43. K.A. Dill and S. Bromberg (2002). Molecular Driving Forces (Garland Science, New York).

    Google Scholar 

  44. N.G. McCrum, B.E. Read, and G. Williams (1967). Anelastic and Dielectric Effects in Polymer Solids (Dover Publications Inc., New York).

    Google Scholar 

  45. G. Williams and M. Cook (1971). Trans. Faraday Soc., 67, p. 990.

    Article  Google Scholar 

  46. A.R., Von Hippel (1966). Dielectrics and Waves (M.I.T. Press, Cambridge).

    Google Scholar 

  47. F. Kremers and A. Schönhals (2002). Broadband Dielectric Spectroscopy (Springer-Verlag, Berlin).

    Google Scholar 

  48. J.D. Jackson (1975). Classical Electrodynamics (Wiley, New York).

    MATH  Google Scholar 

  49. M.J. Duer (2004). Introduction to Solid State NMR Spectroscopy (Oxford, Malden).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Horansky, R., Magnera, T., Price, J., Michl, J. (2007). Artificial Dipolar Molecular Rotors. In: Linke, H., MÃ¥nsson, A. (eds) Controlled Nanoscale Motion. Lecture Notes in Physics, vol 711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49522-3_14

Download citation

Publish with us

Policies and ethics