Artificial Dipolar Molecular Rotors

  • R.D. Horansky
  • T.F. Magnera
  • J.C. Price
  • J. Michl
Part of the Lecture Notes in Physics book series (LNP, volume 711)


Rotors are present in almost every macroscopic machine, converting rotational motion into energy of other forms, or converting other forms of energy into rotation. Rotation may be transmitted via belts or gears, converted into linear motion by various linkages, or used to drive propellers to produce fluid motion. Examples of macroscopic rotors include engines which couple to combustible energy sources, windmills which couple to air flows, and most generators of electricity. A key feature of these objects is the presence of a part with rotational freedom relative to a stationary frame. In this chapter we discuss the miniaturization of rotary machines all the way to the molecular scale, where chemical groups form the rotary and stationary parts. For a recent review of molecules with rotary and stationary parts see [1].


Dielectric Spectroscopy Loss Tangent Scanning Tunneling Microscopy Image Molecular Rotor Bulk Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.S. Kottas, L.I. Clarke, D. Horinek, and J. Michl (2005).Chem. Rev., 105, p. 1281.CrossRefGoogle Scholar
  2. 2.
    T.R. Kelly, H. De Silva, and R.A. Silva (1999). Nature, 401, p. 150.CrossRefADSGoogle Scholar
  3. 3.
    N. Koumura, R.W.J. Zijlstra, R.A. van Delden, N. Harada, and B.L. Feringa (1999). Nature, 401, p. 152.CrossRefADSGoogle Scholar
  4. 4.
    D.A. Leigh, J.K.Y. Wong, F. Dehez, and F. Zerbetto (2003). Nature, 424, p. 174.CrossRefADSGoogle Scholar
  5. 5.
    J.V. Hernández, E.R. Kay, and D.A. Leigh (2004). Science, 306, p. 1532.CrossRefADSGoogle Scholar
  6. 6.
    S.P. Fletcher, F. Dumur, M.M. Pollard, and B.L. Feringa (2005). Science 310, p. 80.CrossRefADSGoogle Scholar
  7. 7.
    L.I. Clarke, D. Horinek, G.S. Kottas, N. Varaska, T.F. Magnera, T.P. Hinderer, R.D. Horansky, J. Michl, and J.C. Price (2002). Nanotechnology, 13, p. 533.CrossRefADSGoogle Scholar
  8. 8.
    R.D. Horansky, L.I. Clarke, T.-A.V. Khuong, P.D. Jarowski, M.A. Garcia Garibay, and J.C. Price (2005). Phys. Rev. B, 72, p. 014302.CrossRefADSGoogle Scholar
  9. 9.
    X. Zheng, M.E. Mulcahy, D. Horinek, F. Galeotti, T.F. Magnera, and J. Michl, (2004). J. Amer. Chem. Soc., 126, p. 4540.CrossRefGoogle Scholar
  10. 10.
    V.M. Rozenbaum (1996). Phys. Rev. B, 53, p. 6240.CrossRefADSGoogle Scholar
  11. 11.
    J. de Jonge, M. Ratner, and R.S.S.W. de Leeuw (2004). J. Phys. Chem. B, 108, p. 2666.CrossRefGoogle Scholar
  12. 12.
    V.M. Rozenbaum, V.M. Ogenko, and A.A. Chuiko (1991). Sov. Phys. Usp., 34, p. 883.CrossRefADSGoogle Scholar
  13. 13.
    J. Vacek and J. Michl (2001). Proc. Natl. Acad. Sci. USA, 98, p. 5481.CrossRefADSGoogle Scholar
  14. 14.
    D. Horinek and J. Michl (2003). J. Amer. Chem. Soc., 125, p. 11900.CrossRefGoogle Scholar
  15. 15.
    U. Burkert and N.L. Allinger (1982). ACS Monograph, No. 177: Molecular Mechanics (ACS, Washington D.C. ).Google Scholar
  16. 16.
    G.S. Kottas (2004). Ph.D. Dissertation, University of Colorado at Boulder.Google Scholar
  17. 17.
    D. Horinek and J. Michl, Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  18. 18.
    D.A. Bonnell (1993). Ed. Scanning Tunneling Microscopy and Spectroscopy Theory, Techniques and Applications (VCH Publishers, New York).Google Scholar
  19. 19.
    A. Sakai (2000). In: Advances in Materials Reasearch: Advances in Scanning Probe Microscopy edited by T. Sakurai and Y. Watanabe (Springer-Verlag, New York), p. 143.Google Scholar
  20. 20.
    Y. Hasegawa, J.F. Jia, T. Sakurai, Z.Q. Li, K. Ohno, and Y. Kawazoe (2000). In: Advances in Materials Reasearch: Advances in Scanning Probe Microscopy edited by T. Sakurai and Y. Watanabe (Springer-Verlag, New York), p. 167.Google Scholar
  21. 21.
    J.A. Appelbaum and D.R. Hamann (1972). Phys. Rev. B, 6, p. 1122.CrossRefADSGoogle Scholar
  22. 22.
    L. Wang and J. Hermans (1995). J. Phys. Chem., 99, p. 12001.CrossRefGoogle Scholar
  23. 23.
    E.G. d’Agliano, P. Kumar, W. Schaich, and H. Suhl (1975). Phys. Rev. B, 11, p. 2122.CrossRefADSGoogle Scholar
  24. 24.
    K. Schönhammer and O. Gunnarson (1980). Phys. Rev. B, 22, p. 1629.CrossRefADSGoogle Scholar
  25. 25.
    Y. Li and G. Wahnström (1992). Phys. Rev. Lett, 68, p. 3444.CrossRefADSGoogle Scholar
  26. 26.
    R.D. Astumian (1996). J. Phys. Chem., 100, p. 19075.CrossRefGoogle Scholar
  27. 27.
    P. Reimann (2002). Phys. Rep., 57, p. 361.MathSciNetGoogle Scholar
  28. 28.
    Y.A. Makhnovskii, V.M. Rozenbaum, D.-Y. Yang, S.H. Lin, and T.Y. Tsong (2004). Phys. Rev. E, 69, p. 021102.CrossRefADSGoogle Scholar
  29. 29.
    R.D. Astumian (2005). Proc. Natl. Acad. Sci. USA, 102, p. 1843.CrossRefADSGoogle Scholar
  30. 30.
    J.V. José and E.J. Saletan (1998). Classical dynamics: a contemporary approach (Cambridge University Press, New York), p. 382 ff.zbMATHGoogle Scholar
  31. 31.
    E.V. Chirikov (1979). Phys. Rep., 52, p. 265.CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    G. Roberts (1990). Ed. Langmuir-Blodgett Films (Plenum Press, New York).Google Scholar
  33. 33.
    F. MacRitchie (1990). Chemistry at Interfaces (Academic Press, San Diego).Google Scholar
  34. 34.
    T.F. Magnera and J. Michl (2002). Proc. Nat. Acad. Sci. USA, 99, p. 4788.CrossRefADSGoogle Scholar
  35. 35.
    N. Varaksa, L. Pospíšil, T.F. Magnera, and J. Michl (2002). Proc. Nat. Acad. Sci. USA, 99, p. 5012.CrossRefADSGoogle Scholar
  36. 36.
    Z. Dominguez, H. Dang, M.J. Strouse, and M.A. Garcia-Garibay (2002). J. Amer. Chem. Soc., 124, p. 7719.CrossRefGoogle Scholar
  37. 37.
    Z. Dominguez, T.-A. V. Khuong, H. Dang, C.N. Sanrame, J.E. Nuñez, and M.A. Garcia-Garibay (2003). J. Amer. Chem. Soc., 125, p. 8827.CrossRefGoogle Scholar
  38. 38.
    R.D. Horansky, L.I. Clarke, E.B. Winston, S. Karlen, M.A. Garcia-Garibay, and J.C. Price (unpublished).Google Scholar
  39. 39.
    W. Press (1981). Single-Particle Rotations in Molecular Crystals (Springer Verlag, Berlin).CrossRefGoogle Scholar
  40. 40.
    F. Reif (1965). Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York).Google Scholar
  41. 41.
    N.W. McLachlan (1947). Theory and Application of the Mathieu Function (Clarendon, Oxford).Google Scholar
  42. 42.
    A.J. Legget, in (1986). Directions in Condensed Matter Physics, edited by G. Grinstein and G. Mazenko (World Scientific, Singapore), p. 187.Google Scholar
  43. 43.
    K.A. Dill and S. Bromberg (2002). Molecular Driving Forces (Garland Science, New York).Google Scholar
  44. 44.
    N.G. McCrum, B.E. Read, and G. Williams (1967). Anelastic and Dielectric Effects in Polymer Solids (Dover Publications Inc., New York).Google Scholar
  45. 45.
    G. Williams and M. Cook (1971). Trans. Faraday Soc., 67, p. 990.CrossRefGoogle Scholar
  46. 46.
    A.R., Von Hippel (1966). Dielectrics and Waves (M.I.T. Press, Cambridge).Google Scholar
  47. 47.
    F. Kremers and A. Schönhals (2002). Broadband Dielectric Spectroscopy (Springer-Verlag, Berlin).Google Scholar
  48. 48.
    J.D. Jackson (1975). Classical Electrodynamics (Wiley, New York).zbMATHGoogle Scholar
  49. 49.
    M.J. Duer (2004). Introduction to Solid State NMR Spectroscopy (Oxford, Malden).Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • R.D. Horansky
    • 1
  • T.F. Magnera
    • 2
  • J.C. Price
    • 1
  • J. Michl
    • 2
  1. 1.Department of PhysicsUniversity of ColoradoBoulderUSA
  2. 2.Department of ChemistryBiochemistry University of ColoradoBoulderUSA

Personalised recommendations