Nanodevices for Single Molecule Studies

  • H.G. Craighead
  • S.M. Stavis
  • K.T. Samiee
Part of the Lecture Notes in Physics book series (LNP, volume 711)


During the last two decades, biotechnology research has resulted in progress in fields as diverse as the life sciences, agriculture and healthcare. While existing technology enables the analysis of a variety of biological systems, new tools are needed for increasing the efficiency of current methods, and for developing new ones altogether. Interest has grown in single molecule analysis for these reasons.


Single Molecule Fluorescence Correlation Spectroscopy Focal Volume Shallow Region Trapping Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Tamarat, et al. (2000). Ten years of single-molecule spectroscopy. Journal of Physical Chemistry A, 104(1), pp. 1–16.CrossRefGoogle Scholar
  2. 2.
    W.P. Ambrose, et al. (1999). Single molecule fluorescence spectroscopy at ambient temperature. Chemical Reviews, 99(10), pp. 2929–2956.CrossRefGoogle Scholar
  3. 3.
    A.D. Menta, et al. (1999). Single-molecule biomechanics with optical methods. Science, 283(5408), pp. 1689–1695.CrossRefADSGoogle Scholar
  4. 4.
    X.S. Xie and J.K. Trautman (1998). Optical studies of single molecules at room temperature. Annual Review of Physical Chemistry, 49, pp. 441–480.CrossRefADSGoogle Scholar
  5. 5.
    T. Plakhotnik, E.A. Donley, and U.P. Wild (1997). Single-molecule spectroscopy. Annual Review of Physical Chemistry, 48, pp. 181–212.CrossRefADSGoogle Scholar
  6. 6.
    S.M. Nie and R.N. Zare (1997). Optical detection of single molecules. Annual Review of Biophysics and Biomolecular Structure, 26, pp. 567–596.CrossRefGoogle Scholar
  7. 7.
    P.B. Fernandes (1998). Technological advances in high-throughput screening. Current Opinion in Chemical Biology, 2(5), pp. 597–603.CrossRefGoogle Scholar
  8. 8.
    S. Weiss (1999). Fluorescence spectroscopy of single biomolecules. Science, 283(5408), pp. 1676–1683.CrossRefADSGoogle Scholar
  9. 9.
    S. Weiss (2000). Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nature Structural Biology, 7(9), pp. 724–729.CrossRefGoogle Scholar
  10. 10.
    M.D. Barnes, W.B. Whitten, and J.M. Ramsey (1995). Detecting Single Molecules in liquids. Analytical Chemistry, 67(13), pp. A418–A423.CrossRefGoogle Scholar
  11. 11.
    W.C.W. Chan, et al. (2002). Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology, 13(1), pp. 40–46.CrossRefADSGoogle Scholar
  12. 12.
    T. Trindade, P. O’Brien, and N.L. Pickett (2001). Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chemistry of Materials, 13(11), pp. 3843–3858.CrossRefGoogle Scholar
  13. 13.
    A.D., Yoffe (2001). Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Advances in Physics, 50(1), pp. 1–208.CrossRefADSGoogle Scholar
  14. 14.
    S.R. Nicewarner-Pena, et al. (2001). Submicrometer metallic barcodes. Science, 294(5540), pp. 137–141.CrossRefADSGoogle Scholar
  15. 15.
    C.H. Wei, et al. (2004) Polarization dependence of light intensity distribution near a nanometric aluminum slit. Journal of the Optical Society of America B-Optical Physics, 21(5), pp. 1005–1012.CrossRefADSGoogle Scholar
  16. 16.
    M. Cabodi, et al. (2002). Continuous separation of biomolecules by the laterally asymmetric diffusion array with out-of-plane sample injection. Electrophoresis, 23(20), pp. 3496–3503.CrossRefGoogle Scholar
  17. 17.
    S.W. Turner, et al. (1998). Monolithic nanofluid sieving structures for DNA manipulation. Journal of Vacuum Science & Technology B, 16(6), pp. 3835–3840.CrossRefADSGoogle Scholar
  18. 18.
    S.W.P. Turner, M. Cabodi, and H.G. Craighead (2002). Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure. Physical Review Letters, 88(12).Google Scholar
  19. 19.
    W. Reisner, et al. (2005). Statics and dynamics of single DNA molecules confined in nanochannels. Physical Review Letters, 94(19).Google Scholar
  20. 20.
    J.O. Tegenfeldt, et al. (2004). Stretching DNA in nanochannels. Biophysical Journal, 2004. 8(1), pp. 596A–596A.Google Scholar
  21. 21.
    J.O. Tegenfeldt, et al. (2004). The dynamics of genomic-length DNA molecules in 100-nm channels. Proceedings of the National Academy of Sciences of the United States of America, 101(30), pp. 10979–10983.CrossRefADSGoogle Scholar
  22. 22.
    P.M. Goodwin, W.P. Ambrose, and R.A. Keller (1996). Single-molecule detection in liquids by laser-induced fluorescence. Accounts of Chemical Research, 29(12), pp. 607–613.CrossRefGoogle Scholar
  23. 23.
    J.B. Pawley, ed. 1995. Handbook of Biological Confocal Microscopy. 2nd ed. Plenum Press: New York, p. 632.Google Scholar
  24. 24.
    P.K. Wong, et al. (2004). Electrokinetics in micro devices for biotechnology applications. Ieee-Asme Transactions on Mechatronics, 9(2), pp. 366–376.CrossRefGoogle Scholar
  25. 25.
    G.J.M. Bruin (2000). Recent developments in electrokinetically driven analysis on microfabricated devices. Electrophoresis, 21(18), pp. 3931–3951.CrossRefGoogle Scholar
  26. 26.
    W.G. Kuhr (1990). Capillary Electrophoresis. Analytical Chemistry, 62(12), pp. R403–R414.CrossRefGoogle Scholar
  27. 27.
    C.A. Monnig, and R.T. Kennedy (1994). Capillary Electrophoresis. Analytical Chemistry, 66(12), pp. R280–R314.CrossRefGoogle Scholar
  28. 28.
    D. Belder, and M. Ludwig (2003). Surface modification in microchip electrophoresis. Electrophoresis, 24(21), pp. 3595–3606.CrossRefGoogle Scholar
  29. 29.
    J.L. Viovy (2000). Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Reviews of Modern Physics, 72(3), pp. 813–872.CrossRefADSGoogle Scholar
  30. 30.
    K. Swinney and D.J. Bornhop (2000). Detection in capillary electrophoresis. Electrophoresis, 21(7), pp. 1239–1250.CrossRefGoogle Scholar
  31. 31.
    S.S. Dukhin (1993). Nonequilibrium Electric Surface Phenomena. Advances in Colloid and Interface Science, 44, pp. 1–134.CrossRefGoogle Scholar
  32. 32.
    C. Schwer, and E. Kenndler (1991). Electrophoresis in Fused-Silica Capillaries–the Influence of Organic-Solvents on the Electroosmotic Velocity and the Zeta Potential. Analytical Chemistry, 63(17), pp. 1801–1807.CrossRefGoogle Scholar
  33. 33.
    R. Parsons (1990). Electrical Double-Layer—Recent Experimental and Theoretical Developments. Chemical Reviews, 90(5), pp. 813–826.CrossRefGoogle Scholar
  34. 34.
    S.L. Carnie, and G.M. Torrie (1984). The Statistical-Mechanics of the Electrical Double-Layer. Advances in Chemical Physics, 56, pp. 141–253.CrossRefGoogle Scholar
  35. 35.
    D.C. Grahame (1947). The Electrical Double Layer and the Theory of Electrocapillarity. Chemical Reviews, 41(3), pp. 441–501.CrossRefGoogle Scholar
  36. 36.
    W. Li, D.P. Fries, and A. Malik (2004). Sol-gel stationary phases for capillary electrochromatography. Journal of Chromatography A, 1044(1–2), pp. 23–52.CrossRefGoogle Scholar
  37. 37.
    M.A. Shoffner, et al. (1996). Chip PCR.1. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Research, 24(2), pp. 375–379.CrossRefGoogle Scholar
  38. 38.
    J.B. Brzoska, I. Benazouz, and F. Rondelez (1994). Silanization of Solid Substrates —A Step Toward Reproducibility. Langmuir, 10(11), pp. 4367–4373.CrossRefGoogle Scholar
  39. 39.
    C. Manta, et al. (2003). Polyethylene glycol as a spacer for solid-phase enzyme immobilization. Enzyme and Microbial Technology, 33(7), pp. 890–898.CrossRefGoogle Scholar
  40. 40.
    J.Q. Li, J. Carlsson, and K. Caldwell (1993). Surface-Properties of Poly- (Ethylene Oxide)-Containing Copolymers on Colloids. Abstracts of Papers of the American Chemical Society, 206, pp. 32–PMSE.Google Scholar
  41. 41.
    Q.S. Huo, et al. (1994). Organization of Organic-Molecules With Inorganic Molecular-Species into Nanocomposite Biphase Arrays. Chemistry of Materials, 6(8), pp. 1176–1191.CrossRefMathSciNetGoogle Scholar
  42. 42.
    C. La Mesa (2005). Polymer-surfactant and protein-surfactant interactions. Journal of Colloid and Interface Science, 286(1), pp. 148–157.CrossRefMathSciNetGoogle Scholar
  43. 43.
    M. Krieger and J. Herz (1994). Structures and Functions of Multiligand Lipoprotein Receptors — Macrophage Scavenger Receptors and Ldl Reeceptor-Related Protein (Lrp). Annual Review of Biochemistry, 63, pp. 601–637.Google Scholar
  44. 44.
    S.B. Zimmerman and A.P. Minton (1993). Macromolecular Crowding — Biochemical, Biophysical, and Physiological Consequences. Annual Review of Biophysics and Biomolecular Structure, 22, pp. 27–65.CrossRefGoogle Scholar
  45. 45.
    D. Qin, et al. (1998). Microfabrication, microstructures and microsystems, in Microsystem Technology in Chemistry and Life Science, pp. 1–20.Google Scholar
  46. 46.
    M. Geissler and Y.N. Xia (2004). Patterning: Principles and some new developments. Advanced Materials, 16(15), pp. 1249–1269.CrossRefGoogle Scholar
  47. 47.
    W. Lang (1996). Silicon microstructuring technology. Materials Science & Engineering R-Reports, 17(1), pp. 1–55.CrossRefGoogle Scholar
  48. 48.
    S.J. Pearton (1994). Reactive Ion Etching Of Iii-V Semiconductors. International Journal of Modern Physics B, 8(14), pp. 1781–1786.CrossRefADSGoogle Scholar
  49. 49.
    M. Foquet, et al. (2002). DNA fragment sizing by single molecule detection in submicrometer-sized closed fluidic channels. Analytical Chemistry, 74(6), pp. 1415–1422.CrossRefGoogle Scholar
  50. 50.
    A. Maciossek, et al. (1995). Galvanoplating and Sacrificial Layers for Surface Micromachining. Microelectronic Engineering, 27(1–4), pp. 503–508.CrossRefGoogle Scholar
  51. 51.
    E. Thomson (1925). The mechanical, thermal and optical properties of fused silica. Journal of the Franklin Institute, 200, pp. 313–325.CrossRefGoogle Scholar
  52. 52.
    I. Fanderlik (1983). Optical Properties of Glass. Elsevier.Google Scholar
  53. 53.
    Melles Griot Optics Guide, mp_3 _2.htm.Google Scholar
  54. 54.
    G.M. Whitesides, et al. (2001). Soft lithography in biology and biochemistry. Annual Review of Biomedical Engineering, 3, pp. 335–373.CrossRefGoogle Scholar
  55. 55.
    J. Kameoka, et al. (2002). An electrospray ionization source for integration with microfluidics. Analytical Chemistry, 74(22), pp. 5897–5901.CrossRefGoogle Scholar
  56. 56.
    J. Kameoka, et al. (2004). Fabrication of suspended silica glass nanofibers from polymeric materials using a scanned electrospinning source. Nano Letters, 4(11), pp. 2105–2108.CrossRefADSGoogle Scholar
  57. 57.
    S.S. Verbridge, et al. (2005). Suspended glass nanochannels coupled with microstructures for single molecule detection. Journal of Applied Physics, 97(12).Google Scholar
  58. 58.
    E.L. Elson and D. Magde (1974). Fluorescence Correlation Spectroscopy.1. Conceptual Basis and Theory. Biopolymers, 13(1), pp. 1–27.CrossRefGoogle Scholar
  59. 59.
    D. Magde E.L. Elson, and W.W. Webb (1974). Fluorescence Correlation Spectroscopy.2. Experimental Realization. Biopolymers, 13(1), pp. 29–61.CrossRefGoogle Scholar
  60. 60.
    D. Magde, W.W. Webb, and E. Elson (1972). Thermodynamic Fluctuations in a Reacting System — Measurement by Fluorescence Correlation Spectroscopy. Physical Review Letters, 29(11), pp. 705–&.CrossRefADSGoogle Scholar
  61. 61.
    M. Foquet, et al. (2004). Focal volume confinement by submicrometer-sized fluidic channels. Analytical Chemistry, 76(6), pp. 1618–1626.CrossRefGoogle Scholar
  62. 62.
    D. Magde and E.L. Elson (1978). Fluorescence Correlation Spectroscopy.3. Uniform Translation and Laminar-Flow. Biopolymers, 17(2), pp. 361–376.CrossRefGoogle Scholar
  63. 63.
    R. Rigler, et al. (1993). Fluorescence Correlation Spectroscopy With High Count Rate And Low-Background -Analysis of Translational Diffusion. European Biophysics Journal With Biophysics Letters, 22(3), pp. 169–175.Google Scholar
  64. 64.
    F.S. Collins, et al. (1998). New goals for the US Human Genome Project, 1998–2003 Science, 282(5389), pp. 682–689.CrossRefADSGoogle Scholar
  65. 65.
    H.P. Chou, et al. (1999). A microfabricated device for sizing and sorting DNA molecules. Proceedings of the National Academy of Sciences of the United States of America, 96(1), pp. 11–13.CrossRefADSGoogle Scholar
  66. 66.
    S.M. Stavis, et al. (2005). Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab on a Chip, 5(3), pp. 337–343.CrossRefGoogle Scholar
  67. 67.
    S.M. Stavis et al. (2005). Detection and identification of nucleic acid engineered fluorescent labels in submicrometre fluidic channels. Nanotechnology.Google Scholar
  68. 68.
    M.J. Levene, et al. (2003). Zero-mode waveguides for single-molecule analysis at high concentrations. Science, 299(5607), pp. 682–686.CrossRefADSGoogle Scholar
  69. 69.
    S.T. Hess and W.W. Webb (2002). Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophysical Journal, 83(4), pp. 2300–2317.CrossRefADSGoogle Scholar
  70. 70.
    K.T. Samiee, et al. (2005). Lambda-Represser Oligomerization Kinetics at High Concentrations Using Fluorescence Correlation Spectroscopy in Zero-Mode Waveguides. Biophysical Journal, 88(3), pp. 2145–2153.CrossRefADSGoogle Scholar
  71. 71.
    D.E. Koppel (1974). Statistical Accuracy in Fluorescence Correlation Spectroscopy. Physical Review A, 10(6), pp. 1938–1945.CrossRefADSMathSciNetGoogle Scholar
  72. 72.
    M. Ptashne (1992).A Genitic Switch. 2nd ed. 1992, Cambridge, Cell Press.Google Scholar
  73. 73.
    T.R. Pray, D.S. Burz, and G.K. Ackers (1998). Cooperative non-specific DNA binding by octamerizing lambda cI repressors, A site-specific thermodynamic analysis. Journal of Molecular Biology, 282(5), pp. 947–958.CrossRefGoogle Scholar
  74. 74.
    J.B. Edel, et al. (2005). High spatial resolution observation of single molecule dynamics in living cell membranes using zero mode waveguides. Biophysical Journal, 88(1), pp. 195A–195A.Google Scholar
  75. 75.
    E. Carrilho (2000). DNA sequencing by capillary array electrophoresis and microfabricated array systems. Electrophoresis, 21(1), pp. 55–65.CrossRefGoogle Scholar
  76. 76.
    N.J. Dovichi (1997). DNA sequencing by capillary electrophoresis. Electrophoresis, 18(12–13), pp. 2393–2399.CrossRefGoogle Scholar
  77. 77.
    C. Heller (2001). Principles of DNA separation with capillary electrophoresis. Electrophoresis, 22(4), pp. 629–643.CrossRefMathSciNetGoogle Scholar
  78. 78.
    J. Han and H.G. Craighead (1999). Entropic trapping and sieving of long DNA molecules in a nanofluidic channel. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 17(4), pp. 2142–2147.CrossRefADSGoogle Scholar
  79. 79.
    J.Y. Han and H.G. Craighead (2002). Characterization and optimization of an entropic trap for DNA separation. Analytical Chemistry, 74(2), pp. 394–401.CrossRefGoogle Scholar
  80. 80.
    J. Han, S.W. Turner, and H.G. Craighead (2001). Entropic trapping and escape of long DNA molecules at submicron size constriction (vol. 83, pp. 1688, 1999). Physical Review Letters, 86(7), pp. 1394–1394.CrossRefADSGoogle Scholar
  81. 81.
    J. Han and H.G. Craighead (2000). Separation of long DNA molecules in a microfabricated entropic trap array. Science, 288(5468), pp. 1026–1029.CrossRefADSGoogle Scholar
  82. 82.
    M. Cabodi, S.W.P. Turner, and H.G. Craighead (2002). Entropic recoil separation of long DNA molecules, Analytical Chemistry, 74(20), pp. 5169–5174.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • H.G. Craighead
    • 1
  • S.M. Stavis
    • 1
  • K.T. Samiee
    • 1
  1. 1.Applied and Engineering PhysicsCornell UniversityIthacaUSA

Personalised recommendations