Skip to main content

BioNEMS: Nanomechanical Systems for Single-Molecule Biophysics

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 711))

Abstract

Techniques from nanoscience now enable the creation of ultrasmall electronic devices. Among these, nanoelectromechanical systems (NEMS) in particular offer unprecedented opportunities for sensitive chemical, biological, and physical measurements [1]. For vacuum-based applications NEMS provide extremely high force and mass sensitivity, ultimately below the attonewton and single-Dalton level respectively. In fluidic media, even though the high quality factors attainable in vacuum become precipitously damped due to fluid coupling, extremely small device size and high compliance still yield force sensitivity at the piconewton level – i.e., smaller than that, on average, required to break individual hydrogen bonds that are the fundamental structural elements underlying molecular recognition processes. A profound and unique new feature of nanoscale fluid-based mechanical sensors is that they offer the advantage of unprecedented signal bandwidth (≫1 MHz), even at piconewton force levels. Their combined sensitivity and temporal resolution is destined to enable real-time observations of stochastic single-molecular biochemical processes down to the sub-microsecond regime [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.L. Roukes, Technical Digest of the 2000 Solid-State Sensor and Actuator Workshop, Hilton Head, NC, (Cleveland: Transducer Research Foundation, 2000); downloadable at http://arxiv.org/pdf/cond-mat/0008187

    Google Scholar 

  2. M.L. Roukes, S.E. Fraser, J.E. Solomon, and M.C. Cross (2001). “Active NEMS arrays for biochemical analyses”, United States Patent Application 20020166962, Filed August 9, referencing U.S. application Ser. No. 60/224, 109, Filed Aug. 9, 2000.

    Google Scholar 

  3. J.H. Hoh, J.P. Cleveland, C.B. Prater, J.-P. Revel, and P.K. Hansma, (1992). J. Am. Chem. Soc., 114, pp. 4917–4918.

    Article  Google Scholar 

  4. G.U. Lee, D.A. Kidwell, and R.J. Colton (1994). Langmuir, 10, pp. 354–357.

    Article  Google Scholar 

  5. E.L. Florin, V.T. Moy, and H.E. Gaub (1994). Science, 264, pp. 415–417.

    Article  ADS  Google Scholar 

  6. U. Dammer, O. Popescu, P. Wagner, D. Anselmetti, H.-J. Güntherodt, and G.N. Misevic (1995). Science, 267, pp. 1173–1175.

    Article  ADS  Google Scholar 

  7. E. Evans, K. Ritchie, and R. Merkel (1995). Biophys. J., 68, pp. 2580–2587.

    Article  ADS  Google Scholar 

  8. M. Radmacher, M. Fritz, H.G. Hansma, and P.K. Hansma (1994). Science, 265, pp. 1577–1579.

    Article  ADS  Google Scholar 

  9. M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, and H.E. Gaub (1997). Science, 276, pp. 1109–1112.

    Article  Google Scholar 

  10. G.U. Lee, L.A. Chirsley, and R.J. Colton (1994). Science, 266, pp. 771–773.

    Article  ADS  Google Scholar 

  11. H.-J. Butt (1995). Journal of Colloid and Interface Science, 180, pp. 251–259.

    Article  Google Scholar 

  12. R. Raiteri, G. Nelles, H.-J. Butt, W. Knoll, and P. Skládal (1999). Sensor and Actuator B-Chem., 61, pp. 213–217.

    Article  Google Scholar 

  13. R. Raiteri, M. Grattarola, H-J. Butt, and P. Skládal (2001). Sensor and Actuator B- Chem., 79, pp. 115–126.

    Article  Google Scholar 

  14. G. Wu, R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, and A. Majumdar (2001). Nature Biotechnology, 19, pp. 856–860.

    Article  Google Scholar 

  15. J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.J. Güntherodt, Ch. Gerber, and J.K. Gimzewski (2000). Science, 288, pp. 316–318.

    Article  ADS  Google Scholar 

  16. G. Wu, H.F. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M.F. Hagan, A.K. Chakraborty, and A. Majumdar (2001). PNAS, 98, pp. 1560–1564.

    Article  ADS  Google Scholar 

  17. C.S. Smith (1954). Phys. Rev., 94, pp. 42–49.

    Article  ADS  Google Scholar 

  18. O.N. Tufte, P.W. Chapman, and D. Long (1962). J. Appl. Phys., 33, p. 3322.

    Article  ADS  Google Scholar 

  19. A.C.M. Gieles (1969). IEEE Int. Sol. St., pp. 108–109.

    Google Scholar 

  20. J.A. Harley and T.W. Kenny (1999). Appl. Phys. Lett., 75, pp. 289–291.

    Article  ADS  Google Scholar 

  21. M. Tortonese, R.C. Barrett, and C.F. Quate (1993). Appl. Phys. Lett., 62, pp. 834–836.

    Article  ADS  Google Scholar 

  22. M. Tortonese, H. Yamada, R.C. Barrett, R.C., and C.F. Quate (1991). Atomic force microscopy using a piezoresistive cantilever. TRANSDUCERS ’91. 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, 448–451.

    Google Scholar 

  23. P.A. Rasmussen, J. Thaysen, O. Hansen, S.C. Eriksen, and A. Boisen (2003). Ultramicroscopy, 97, pp. 371–376.

    Article  Google Scholar 

  24. K. W. Wee, G.Y. Kang, J. Park, J.Y. Kang, D.S. Yoon, J.H. Park, and T.S. Kim (2005). Biosensors and Bioelectronics, 20, pp. 1932–1938.

    Article  Google Scholar 

  25. P.A. Rasmussen, O. Hansen, and A. Boisen (2005). Appl. Phys. Lett., 86, p. 203502.

    Article  ADS  Google Scholar 

  26. P.A. Rasmussen, A.V. Grigorov, and A. Boisen (2005). J. Micromech. Microeng., 15, pp. 1088–1091.

    Article  ADS  Google Scholar 

  27. S. Kassegne, J.M. Madou, R. Whitten, J. Zoval, E. Mather, K. Sarkar, H. Dalibor, H., and S. Maity (2002). Design Issues in SOI-based high-sensitivity piezoresistive cantilever devices. Proc. SPIE Conf. on Smart Structures and Materials, (San Diego, CA 17–21 March).

    Google Scholar 

  28. M. Yang, X. Zhang, K. Vafai, and C.S. Ozkan (2003). J. Micromech. Microeng., 13, pp. 864–872.

    Article  ADS  Google Scholar 

  29. E.M. Purcell (1977). Am. J. Phys., 45, pp. 3–11.

    Article  ADS  Google Scholar 

  30. M.R. Paul and M.C. Cross (2004). Phys. Rev. Lett. 92, p. 235501.

    Article  ADS  Google Scholar 

  31. D. Sarid (1991). Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces (New York), pp. 9–13.

    Google Scholar 

  32. F. Gittes and C.F. Schmidt (1998). Eur. Biophys. J., 27, pp. 75–81.

    Article  Google Scholar 

  33. J.E. Sader (1998). J. Appl. Phys., 84, pp. 64–76.

    Article  ADS  Google Scholar 

  34. E.O. Tuck (1969). J. Eng. Math., 3, pp. 29–44.

    Article  MATH  Google Scholar 

  35. L. Rosenhead (1963). Laminar Boundary Layers, Oxford University Press (Oxford, Great Britain), pp. 390–393.

    MATH  Google Scholar 

  36. K.Y. Yasumura, T.D. Stowe, E.M. Chow, T. Pfafman, T.W. Kenny, B.C. Stipe, and D. Rugar (2000). J MEMS, 9, pp. 117–125.

    Google Scholar 

  37. O.N. Tufte and E.L. Stelzer (1963). J. Appl. Phys., 34, pp. 313–318.

    Article  ADS  Google Scholar 

  38. W.P. Mason and R.N. Thurston (1957). J. Acoust. Soc. Am., 29, pp. 1096–1101.

    Article  ADS  Google Scholar 

  39. M.B. Viani, T.E. Schaffer, A. Chand, M. Rief, H.E. Gaub, and P.K. Hansma (1999). J. Appl. Phys., 86, pp. 2258–2262.

    Article  ADS  Google Scholar 

  40. J.L. Arlett (2005). Doctoral Thesis, Department of Physics, California Institute of Technology (unpublished).

    Google Scholar 

  41. J.A. Harley and T.W. Kenny (1999). Appl. Phys. Lett., 75, pp. 289–291.

    Article  ADS  Google Scholar 

  42. C.Y. Ho, R.W. Powell, and P.E. Liley (1972). P.E. J. Phys. Chem. Ref. Data, 1, pp. 279–421.

    Article  Google Scholar 

  43. J.V. Sengers and J.T.R. Watson (1986). J. Phys. Chem. Ref. Data, 15, pp. 1291–1314.

    Article  ADS  Google Scholar 

  44. J.A. Harley and T.W. Kenny (2000). J. MEMS, 9, pp. 226–235.

    Google Scholar 

  45. J.H. Hoh, J.P. Clevland, C.B. Prater, J.-P. Revel, and P.K. Hansma (1992). J. Am. Chem. Soc., 114, pp. 4917–4918.

    Article  Google Scholar 

  46. M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, and H.E. Gaub (1999). Science, 283, pp. 1727–1730.

    Article  ADS  Google Scholar 

  47. E. Evans and K. Ritchie (1999). Biophys. J., 76, pp. 2439–2447.

    Article  Google Scholar 

  48. U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, M. Dreier, W. Huber, and H.-J. Güntherodt (1996). Biophys. J., 70, pp. 2437–2441.

    Article  ADS  Google Scholar 

  49. P. Hinterdorfer, W. Baumgartner, H.J. Gruber, K. Schilcher, and H. Schindler (1996). Proc. Natl. Acad. Sci., USA., 93, pp. 3477–3481.

    Article  ADS  Google Scholar 

  50. F.N. Hooge (1969). Phys. Lett., A A29, pp. 139–140.

    Article  ADS  Google Scholar 

  51. L.K. Vandamme and S. Oosterhoof (1986). J. Appl. Phys., 59, pp. 3169–3174.

    Article  ADS  Google Scholar 

  52. J.W.M. Chon, P. Mulvaney, and J. Sader (2000). J Appl. Phys., 87, pp. 3978–3988.

    Article  ADS  Google Scholar 

  53. H.B. Callen and R.F. Greene (1952). Phys. Rev., 86, pp. 3978–3988.

    Article  MathSciNet  Google Scholar 

  54. Chandler (1987). Introduction to Modern Statistical Mechanics. Oxford University Press.

    Google Scholar 

  55. H.Q. Yang and V.B. Makhijani (1994). V.B. A strongly-coupled pressure-based CFD algorithm for fluid structure interaction. AIAA-94–0179, pp. 1–10.

    Google Scholar 

  56. CFD Research Corporation, 215 Wynn Drive, Huntsville, AL 35805.

    Google Scholar 

  57. J.-C. Meiners and S.R. Quake (1999). Phys. Rev. Lett., 82, pp. 2211–2214.

    Article  ADS  Google Scholar 

  58. J.L. Arlett, et al. (2005). To be published.

    Google Scholar 

  59. C.A. Canaria, J.O. Smith, C.J. Yu, S.E. Fraser, and R. Lansford (2005). Tetrahedron Letters, 46, p. 4813; C.A. Canaria, et al., (2005). To be published.

    Article  Google Scholar 

  60. D.E. Segall and R. Phillips (2005). To be published.

    Google Scholar 

  61. D.J. Harrison, K. Fluri, K. Seiler, Z.H. Fan, C.S. Effenhauser, and A. Manz (1993). Science, 261, pp. 895–897.

    Article  ADS  Google Scholar 

  62. H.-P. Chou, C. Spence, A. Scherer, and S. Quake (1999) PNAS, 96, pp. 11–13.

    Article  ADS  Google Scholar 

  63. M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, A. and S. Quake (2000). Science, 288, pp. 113–116.

    Article  ADS  Google Scholar 

  64. J.E. Solomon and M. Paul (2005). “The Kinetics of Analyte Capture on Nanoscale Sensors”, submitted to Biophysical Journal.

    Google Scholar 

  65. E. Evans (2001). Annu. Rev. Biophys. Biomol. Struct., 30, pp. 105–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Arlett, J., Paul, M., Solomon, J., Cross, M., Fraser, S., Roukes, M. (2007). BioNEMS: Nanomechanical Systems for Single-Molecule Biophysics. In: Linke, H., Månsson, A. (eds) Controlled Nanoscale Motion. Lecture Notes in Physics, vol 711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49522-3_12

Download citation

Publish with us

Policies and ethics