BioNEMS: Nanomechanical Systems for Single-Molecule Biophysics

  • J.L. Arlett
  • M.R. Paul
  • J.E. Solomon
  • M.C. Cross
  • S.E. Fraser
  • M.L. Roukes
Part of the Lecture Notes in Physics book series (LNP, volume 711)


Techniques from nanoscience now enable the creation of ultrasmall electronic devices. Among these, nanoelectromechanical systems (NEMS) in particular offer unprecedented opportunities for sensitive chemical, biological, and physical measurements [1]. For vacuum-based applications NEMS provide extremely high force and mass sensitivity, ultimately below the attonewton and single-Dalton level respectively. In fluidic media, even though the high quality factors attainable in vacuum become precipitously damped due to fluid coupling, extremely small device size and high compliance still yield force sensitivity at the piconewton level – i.e., smaller than that, on average, required to break individual hydrogen bonds that are the fundamental structural elements underlying molecular recognition processes. A profound and unique new feature of nanoscale fluid-based mechanical sensors is that they offer the advantage of unprecedented signal bandwidth (≫1 MHz), even at piconewton force levels. Their combined sensitivity and temporal resolution is destined to enable real-time observations of stochastic single-molecular biochemical processes down to the sub-microsecond regime [2].


Noise Spectrum Force Spectroscopy Johnson Noise Force Sensitivity Rectangular Cantilever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.L. Roukes, Technical Digest of the 2000 Solid-State Sensor and Actuator Workshop, Hilton Head, NC, (Cleveland: Transducer Research Foundation, 2000); downloadable at Scholar
  2. 2.
    M.L. Roukes, S.E. Fraser, J.E. Solomon, and M.C. Cross (2001). “Active NEMS arrays for biochemical analyses”, United States Patent Application 20020166962, Filed August 9, referencing U.S. application Ser. No. 60/224, 109, Filed Aug. 9, 2000.Google Scholar
  3. 3.
    J.H. Hoh, J.P. Cleveland, C.B. Prater, J.-P. Revel, and P.K. Hansma, (1992). J. Am. Chem. Soc., 114, pp. 4917–4918.CrossRefGoogle Scholar
  4. 4.
    G.U. Lee, D.A. Kidwell, and R.J. Colton (1994). Langmuir, 10, pp. 354–357.CrossRefGoogle Scholar
  5. 5.
    E.L. Florin, V.T. Moy, and H.E. Gaub (1994). Science, 264, pp. 415–417.CrossRefADSGoogle Scholar
  6. 6.
    U. Dammer, O. Popescu, P. Wagner, D. Anselmetti, H.-J. Güntherodt, and G.N. Misevic (1995). Science, 267, pp. 1173–1175.CrossRefADSGoogle Scholar
  7. 7.
    E. Evans, K. Ritchie, and R. Merkel (1995). Biophys. J., 68, pp. 2580–2587.ADSCrossRefGoogle Scholar
  8. 8.
    M. Radmacher, M. Fritz, H.G. Hansma, and P.K. Hansma (1994). Science, 265, pp. 1577–1579.CrossRefADSGoogle Scholar
  9. 9.
    M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, and H.E. Gaub (1997). Science, 276, pp. 1109–1112.CrossRefGoogle Scholar
  10. 10.
    G.U. Lee, L.A. Chirsley, and R.J. Colton (1994). Science, 266, pp. 771–773.CrossRefADSGoogle Scholar
  11. 11.
    H.-J. Butt (1995). Journal of Colloid and Interface Science, 180, pp. 251–259.CrossRefGoogle Scholar
  12. 12.
    R. Raiteri, G. Nelles, H.-J. Butt, W. Knoll, and P. Skládal (1999). Sensor and Actuator B-Chem., 61, pp. 213–217.CrossRefGoogle Scholar
  13. 13.
    R. Raiteri, M. Grattarola, H-J. Butt, and P. Skládal (2001). Sensor and Actuator B- Chem., 79, pp. 115–126.CrossRefGoogle Scholar
  14. 14.
    G. Wu, R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, and A. Majumdar (2001). Nature Biotechnology, 19, pp. 856–860.CrossRefGoogle Scholar
  15. 15.
    J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.J. Güntherodt, Ch. Gerber, and J.K. Gimzewski (2000). Science, 288, pp. 316–318.CrossRefADSGoogle Scholar
  16. 16.
    G. Wu, H.F. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M.F. Hagan, A.K. Chakraborty, and A. Majumdar (2001). PNAS, 98, pp. 1560–1564.CrossRefADSGoogle Scholar
  17. 17.
    C.S. Smith (1954). Phys. Rev., 94, pp. 42–49.CrossRefADSGoogle Scholar
  18. 18.
    O.N. Tufte, P.W. Chapman, and D. Long (1962). J. Appl. Phys., 33, p. 3322.CrossRefADSGoogle Scholar
  19. 19.
    A.C.M. Gieles (1969). IEEE Int. Sol. St., pp. 108–109.Google Scholar
  20. 20.
    J.A. Harley and T.W. Kenny (1999). Appl. Phys. Lett., 75, pp. 289–291.CrossRefADSGoogle Scholar
  21. 21.
    M. Tortonese, R.C. Barrett, and C.F. Quate (1993). Appl. Phys. Lett., 62, pp. 834–836.CrossRefADSGoogle Scholar
  22. 22.
    M. Tortonese, H. Yamada, R.C. Barrett, R.C., and C.F. Quate (1991). Atomic force microscopy using a piezoresistive cantilever. TRANSDUCERS ’91. 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, 448–451.Google Scholar
  23. 23.
    P.A. Rasmussen, J. Thaysen, O. Hansen, S.C. Eriksen, and A. Boisen (2003). Ultramicroscopy, 97, pp. 371–376.CrossRefGoogle Scholar
  24. 24.
    K. W. Wee, G.Y. Kang, J. Park, J.Y. Kang, D.S. Yoon, J.H. Park, and T.S. Kim (2005). Biosensors and Bioelectronics, 20, pp. 1932–1938.CrossRefGoogle Scholar
  25. 25.
    P.A. Rasmussen, O. Hansen, and A. Boisen (2005). Appl. Phys. Lett., 86, p. 203502.CrossRefADSGoogle Scholar
  26. 26.
    P.A. Rasmussen, A.V. Grigorov, and A. Boisen (2005). J. Micromech. Microeng., 15, pp. 1088–1091.CrossRefADSGoogle Scholar
  27. 27.
    S. Kassegne, J.M. Madou, R. Whitten, J. Zoval, E. Mather, K. Sarkar, H. Dalibor, H., and S. Maity (2002). Design Issues in SOI-based high-sensitivity piezoresistive cantilever devices. Proc. SPIE Conf. on Smart Structures and Materials, (San Diego, CA 17–21 March).Google Scholar
  28. 28.
    M. Yang, X. Zhang, K. Vafai, and C.S. Ozkan (2003). J. Micromech. Microeng., 13, pp. 864–872.CrossRefADSGoogle Scholar
  29. 29.
    E.M. Purcell (1977). Am. J. Phys., 45, pp. 3–11.CrossRefADSGoogle Scholar
  30. 30.
    M.R. Paul and M.C. Cross (2004). Phys. Rev. Lett. 92, p. 235501.CrossRefADSGoogle Scholar
  31. 31.
    D. Sarid (1991). Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces (New York), pp. 9–13.Google Scholar
  32. 32.
    F. Gittes and C.F. Schmidt (1998). Eur. Biophys. J., 27, pp. 75–81.CrossRefGoogle Scholar
  33. 33.
    J.E. Sader (1998). J. Appl. Phys., 84, pp. 64–76.CrossRefADSGoogle Scholar
  34. 34.
    E.O. Tuck (1969). J. Eng. Math., 3, pp. 29–44.zbMATHCrossRefGoogle Scholar
  35. 35.
    L. Rosenhead (1963). Laminar Boundary Layers, Oxford University Press (Oxford, Great Britain), pp. 390–393.zbMATHGoogle Scholar
  36. 36.
    K.Y. Yasumura, T.D. Stowe, E.M. Chow, T. Pfafman, T.W. Kenny, B.C. Stipe, and D. Rugar (2000). J MEMS, 9, pp. 117–125.Google Scholar
  37. 37.
    O.N. Tufte and E.L. Stelzer (1963). J. Appl. Phys., 34, pp. 313–318.CrossRefADSGoogle Scholar
  38. 38.
    W.P. Mason and R.N. Thurston (1957). J. Acoust. Soc. Am., 29, pp. 1096–1101.CrossRefADSGoogle Scholar
  39. 39.
    M.B. Viani, T.E. Schaffer, A. Chand, M. Rief, H.E. Gaub, and P.K. Hansma (1999). J. Appl. Phys., 86, pp. 2258–2262.CrossRefADSGoogle Scholar
  40. 40.
    J.L. Arlett (2005). Doctoral Thesis, Department of Physics, California Institute of Technology (unpublished).Google Scholar
  41. 41.
    J.A. Harley and T.W. Kenny (1999). Appl. Phys. Lett., 75, pp. 289–291.CrossRefADSGoogle Scholar
  42. 42.
    C.Y. Ho, R.W. Powell, and P.E. Liley (1972). P.E. J. Phys. Chem. Ref. Data, 1, pp. 279–421.CrossRefGoogle Scholar
  43. 43.
    J.V. Sengers and J.T.R. Watson (1986). J. Phys. Chem. Ref. Data, 15, pp. 1291–1314.ADSCrossRefGoogle Scholar
  44. 44.
    J.A. Harley and T.W. Kenny (2000). J. MEMS, 9, pp. 226–235.Google Scholar
  45. 45.
    J.H. Hoh, J.P. Clevland, C.B. Prater, J.-P. Revel, and P.K. Hansma (1992). J. Am. Chem. Soc., 114, pp. 4917–4918.CrossRefGoogle Scholar
  46. 46.
    M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, and H.E. Gaub (1999). Science, 283, pp. 1727–1730.CrossRefADSGoogle Scholar
  47. 47.
    E. Evans and K. Ritchie (1999). Biophys. J., 76, pp. 2439–2447.CrossRefGoogle Scholar
  48. 48.
    U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, M. Dreier, W. Huber, and H.-J. Güntherodt (1996). Biophys. J., 70, pp. 2437–2441.CrossRefADSGoogle Scholar
  49. 49.
    P. Hinterdorfer, W. Baumgartner, H.J. Gruber, K. Schilcher, and H. Schindler (1996). Proc. Natl. Acad. Sci., USA., 93, pp. 3477–3481.CrossRefADSGoogle Scholar
  50. 50.
    F.N. Hooge (1969). Phys. Lett., A A29, pp. 139–140.CrossRefADSGoogle Scholar
  51. 51.
    L.K. Vandamme and S. Oosterhoof (1986). J. Appl. Phys., 59, pp. 3169–3174.CrossRefADSGoogle Scholar
  52. 52.
    J.W.M. Chon, P. Mulvaney, and J. Sader (2000). J Appl. Phys., 87, pp. 3978–3988.CrossRefADSGoogle Scholar
  53. 53.
    H.B. Callen and R.F. Greene (1952). Phys. Rev., 86, pp. 3978–3988.CrossRefMathSciNetGoogle Scholar
  54. 54.
    Chandler (1987). Introduction to Modern Statistical Mechanics. Oxford University Press.Google Scholar
  55. 55.
    H.Q. Yang and V.B. Makhijani (1994). V.B. A strongly-coupled pressure-based CFD algorithm for fluid structure interaction. AIAA-94–0179, pp. 1–10.Google Scholar
  56. 56.
    CFD Research Corporation, 215 Wynn Drive, Huntsville, AL 35805.Google Scholar
  57. 57.
    J.-C. Meiners and S.R. Quake (1999). Phys. Rev. Lett., 82, pp. 2211–2214.CrossRefADSGoogle Scholar
  58. 58.
    J.L. Arlett, et al. (2005). To be published.Google Scholar
  59. 59.
    C.A. Canaria, J.O. Smith, C.J. Yu, S.E. Fraser, and R. Lansford (2005). Tetrahedron Letters, 46, p. 4813; C.A. Canaria, et al., (2005). To be published.CrossRefGoogle Scholar
  60. 60.
    D.E. Segall and R. Phillips (2005). To be published.Google Scholar
  61. 61.
    D.J. Harrison, K. Fluri, K. Seiler, Z.H. Fan, C.S. Effenhauser, and A. Manz (1993). Science, 261, pp. 895–897.CrossRefADSGoogle Scholar
  62. 62.
    H.-P. Chou, C. Spence, A. Scherer, and S. Quake (1999) PNAS, 96, pp. 11–13.CrossRefADSGoogle Scholar
  63. 63.
    M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, A. and S. Quake (2000). Science, 288, pp. 113–116.CrossRefADSGoogle Scholar
  64. 64.
    J.E. Solomon and M. Paul (2005). “The Kinetics of Analyte Capture on Nanoscale Sensors”, submitted to Biophysical Journal.Google Scholar
  65. 65.
    E. Evans (2001). Annu. Rev. Biophys. Biomol. Struct., 30, pp. 105–128.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • J.L. Arlett
    • 2
  • M.R. Paul
    • 5
  • J.E. Solomon
    • 2
  • M.C. Cross
    • 2
  • S.E. Fraser
    • 1
    • 3
    • 4
  • M.L. Roukes
    • 1
    • 2
    • 4
  1. 1.Kavli Nanoscience InstitutePasadenaUSA
  2. 2.Division of Physics, Mathematics and AstronomyCalifornia Institute of Technology PasadenaPasadenaUSA
  3. 3.Division of BiologyPasadenaUSA
  4. 4.Division of Engineering and Applied ScienceCalifornia Institute of Technology PasadenaPasadenaUSA
  5. 5.Department of Mechanical EngineeringVirginia Polytechnic Institute and State University BlacksburgBlacksburg

Personalised recommendations