When is a Distribution Not a Distribution, and Why Would You Care: Single-Molecule Measurements of Repressor Protein 1-D Diffusion on DNA

  • Y.M. Wang
  • H. Flyvbjerg
  • E.C. Cox
  • R.H. Austin
Part of the Lecture Notes in Physics book series (LNP, volume 711)


We address the long-standing puzzle of why some proteins find their targets faster than allowed by 3D diffusion. To this end, we measured the onedimensional diffusion of LacI repressor proteins along elongated Lambda DNA using single molecule imaging techniques. We find that (1) LacI diffuses along nonspecific sequences of DNA in the form of 1D Brownian motion; (2) the observed 1D diffusion coefficients DDNA vary over an unexpectedly large range, from 2.3×10-12 cm2/s to 1.3 × 10-9 cm2/s; (3) the lengths of DNA covered by these 1D diffusions vary from 120nm to 2920 nm; and (4) the mean values of DDNA and the diffusional lengths indeed predict a LacI target binding rate 90 times faster than the 3D diffusion limit. The first half of this chapter is a tutorial on the models we use to think about the physics, the limited and noisy data, and how to squeeze the maximum amount of physics from these data. The second half is about our experiments and results.


Random Motion Stochastic Error Random Trajectory Conformational Substate Conformational Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Austin and C. M. Chen (1992). The Spin-Glass Analogy in Protein Dynamics, pp. 179–223. World Scientific, Singapore.Google Scholar
  2. 2.
    S. B. Prusiner, M. R. Scott, S. J. DeArmond, and F. E. Cohen. (1998). Prion protein biology. Cell, 93, pp. 337–348.CrossRefGoogle Scholar
  3. 3.
    J. T. Kadonaga (1998). Eukaryotic transcription: An interlaced network of transcription factors and chromatin-modifying machines. Cell, 92, pp. 307–313.CrossRefGoogle Scholar
  4. 4.
    Chapter entitled Bemerkungen über den Gebrauch des Vergrösserungsglases in J. Ingen-Housz, Verm. Schriften physisch-medicinischen Inhalts. Christian Friederich Wappler, Wien, (1784).Google Scholar
  5. 5.
    J. Ingen-Housz (1789). Nouvelles expériences et observations sur divers objets de physique. Théophile Barrois le jeune, Paris.Google Scholar
  6. 6.
    N. G. Van Kampen (2001). Stochastic Processes in Physics and Chemistry. North-Holland.Google Scholar
  7. 7.
    A. Einstein (1905). On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat. Ann. d. Phys., 17, p. 549, In German. English translation published in [23].ADSCrossRefGoogle Scholar
  8. 8.
    K. Berg-Sørensen and H. Flyvbjerg (2004). Power spectrum analysis for optical tweezers. Rev. Sci. Instrum., 875, pp. 594–612.CrossRefADSGoogle Scholar
  9. 9.
    Hong Qian, Michael P. Sheetz, and Elliot L. Elson (1991). Single particle tracking: Analysis of diffusion and flow in two-dimensional systems. Biophysical Journal, 60, pp. 910–921.CrossRefADSGoogle Scholar
  10. 10.
    D. Frenkel and B. Smit. Understanding Molecular Simulation. Elsevier, USA, 2nd edition.Google Scholar
  11. 11.
    A. D. Riggs, S. Bougeois, and M. Cohn (1970). The lac repressor-operator interaction. 3. Kinetic studies. Journal of Molecular Biology, 53, pp. 401–417.CrossRefGoogle Scholar
  12. 12.
    O. G. Berg and P. H. vonHippel (1985). Diffusion-controlled macromolecular interactions. Annual Review of Biophysics and biophysical chemistry. 14, pp. 131–160.CrossRefGoogle Scholar
  13. 13.
    Stephen E. Halford and John F. Marko (2004). How do site-specific DNAbinding proteins find their targets? Nucleic Acids Research, 32, pp. 3040–3052.CrossRefGoogle Scholar
  14. 14.
    M. D. Barkley (1981). Salt dependence of the kinetics of the lac repressoroperator interaction: role of nonoperator deoxyribonucleic acid (DNA) in the association reaction. Biochemistry, 20, pp. 3833–3842.CrossRefGoogle Scholar
  15. 15.
    M. Hsien and M. Brenowitz (1997). Comparison of the DNA association kinetics of the Lac repressor tetramer, its dimeric mutant Laciadj and the native dimeric Gal repressor. Journal of Biological Chemistry, 272, pp. 22092–22096.CrossRefGoogle Scholar
  16. 16.
    Y. M. Wang, J. Tegenfeldt, W. Reisner, R. Riehn, Xiao-Juan Guan, Ling Guo, Ido Golding, Edward C. Cox, James Sturm, and Robert H. Austin (2005). Single-molecule studies of repressor-DNA interactions show long-range interactions. Proceeding of the National Academy of Sciences. 102, pp. 9796–9801.CrossRefADSGoogle Scholar
  17. 17.
    T. T. Perkins, D. E. Smith, R. G. Larson, and S. Chu (1995). Stretching of a single tethered polymer in a uniform flow. Science, 268, pp. 83–87.CrossRefADSGoogle Scholar
  18. 18.
    Steven B. Smith, Laura Finzi, and Carlos Bustamante (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258, pp. 1122–1126.CrossRefADSGoogle Scholar
  19. 19.
    R. H. Austin, K. Beeson, L. Eisenstein, H. Frauenfelder, I. Gunsalus, and V. Marshall (1974). Activation energy spectrum of a biomolecule: Photodissociation of carbonmonoxy myoglobin at low temperatures. Physics Review Letters, 32, pp. 403–405.CrossRefADSGoogle Scholar
  20. 20.
    M. E. Hogan and R. H. Austin (1987). Importance of DNA stiffness in protein-DNA binding specificity. Nature, 329, pp. 263–266.CrossRefADSGoogle Scholar
  21. 21.
    Charalampos G. Kalodimos, Nikolaos Biris, Alexandre M. J. J. Bonvin, Marc M. Levandoski, Marc Guennuegues, Rolf Boelens, and Robert Kaptein (2004). Adaptation in nonspecific and specific protein-DNA complexes. Science, 305, pp. 386–389.CrossRefADSGoogle Scholar
  22. 22.
    N. R. Cozarelli, T. Boles, and J. White (1990). Topology and its Biological Effects. Cold Spring Harbor Press.Google Scholar
  23. 23.
    A. Einstein (1985). Investigations on the Theory of the Brownian Movement. Dover Publications, Inc. New York, edited with notes by R. Fürth, translated by A. D. Cowper. edition.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Y.M. Wang
    • 1
  • H. Flyvbjerg
    • 2
  • E.C. Cox
    • 3
  • R.H. Austin
    • 1
  1. 1.Department of PhysicsPrinceton UniversityPrinceton
  2. 2.Biosystems Department and Danish Polymer CentreRisø National LaboratoryRoskildeDenmark
  3. 3.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations