Advertisement

Nonequilibrium Fluctuations of a Single Biomolecule

  • C. Jarzynski
Part of the Lecture Notes in Physics book series (LNP, volume 711)

Abstract

In recent years it has been realized that equilibrium information is subtly encoded in the fluctuations of a microscopic system that is driven away from equilibrium, such as a biomolecule stretched irreversibly using optical tweezers. The key to decoding this information resides in the external work, W, performed on the system. I will give a brief summary of three theoretical predictions that relate nonequilibrium statistical fluctuations in W to equilibrium properties of the system, and which remain valid even in the far-from-equilibrium limit.

Keywords

Partition Function Thermal Equilibrium External Work Thermodynamic Process Boltzmann Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.C. Tolman (1938). The Principles of Statistical Mechanics. Oxford.Google Scholar
  2. 2.
    L. Onsager (1931). Phys. Rev., 37, p. 405; Ibid. (1931). 38, p. 2265. L. Onsager and S. Machlup (1953). Phys. Rev., 91, p. 1505.zbMATHCrossRefADSGoogle Scholar
  3. 3.
    C. Bustamante, J. Liphardt, and F. Ritort (2005). Physics Today, 58, p. 43.CrossRefGoogle Scholar
  4. 4.
    D.J. Evans, E.G.D. Cohen, and G.P. Morriss (1993). Phys. Rev. Lett., 71, p. 2401.zbMATHCrossRefADSGoogle Scholar
  5. 5.
    D.J. Evans and D.J. Searles (1994). Phys. Rev. E, 50, p. 1645.CrossRefADSGoogle Scholar
  6. 6.
    G. Gallavotti and E.G.D. Cohen (1995). J. Stat. Phys., 80, p. 931.zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    J. Kurchan (1998). J. Phys. A, 31, p. 3719.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    J.L. Lebowitz and H. Spohn (1999). J. Stat. Phys., 95, p. 333.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    C. Maes (1999). J. Stat. Phys., 95, p. 367.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D.J. Evans and D. Searles (2002). Adv. Phys., 51, p. 1529.CrossRefADSGoogle Scholar
  11. 11.
    G.M. Wang et al. (2002). Phys. Rev. Lett., 89, p. 050601.CrossRefADSGoogle Scholar
  12. 12.
    D.M. Carberry et al. (2004). Phys. Rev. Lett., 92, p. 140601.CrossRefADSGoogle Scholar
  13. 13.
    R. van Zon, S. Ciliberto, and E.G.D. Cohen (2004). Phys. Rev. Lett., 92, p. 130601.CrossRefGoogle Scholar
  14. 14.
    C. Jarzynski (1997). Phys. Rev. Lett., 78, p. 2690.CrossRefADSGoogle Scholar
  15. 15.
    C. Jarzynski (1997). Phys. Rev. E, 56, p. 5018.CrossRefADSGoogle Scholar
  16. 16.
    G.E. Crooks (1998). J. Stat. Phys., 90, p. 1481.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    G.E. Crooks (1999). Phys. Rev. E, 60, p. 2721.CrossRefADSGoogle Scholar
  18. 18.
    G.E. Crooks (2000). Phys. Rev. E, 61, p. 2361.CrossRefADSGoogle Scholar
  19. 19.
    A. Yukawa (2000). J. Phys. Soc. Japan, 69, p. 2367.zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    G. Hummer and A. Szabo (2001). 1Proc. Natl. Acad. Sci. (USA), 98, p. 3658.CrossRefGoogle Scholar
  21. 21.
    C. Jarzynski (2002). In Dynamics of Dissipation, P. Garbaczewski and R. Olkiewicz, eds. Springer, Berlin.Google Scholar
  22. 22.
    J. Liphardt et al. (2002). Science, 296, p. 1832.CrossRefADSGoogle Scholar
  23. 23.
    D.J. Evans (2003). Mol. Phys., 101, p. 1551.CrossRefADSGoogle Scholar
  24. 24.
    S. Mukamel (2003). Phys. Rev. Lett., 90, p. 170604.CrossRefADSGoogle Scholar
  25. 25.
    F. Ritort (2003). Séminaire Poincaré, 2, p. 193.Google Scholar
  26. 26.
    S.X. Sun (2003). J. Chem. Phys., 118, p. 5769.CrossRefADSGoogle Scholar
  27. 27.
    E.G.D. Cohen and D. Mauzerall (2004). J. Stat. Mech.: Theor. Exp. P07006.Google Scholar
  28. 28.
    C. Jarzynski (2004). J. Stat. Mech.: Theor. Exp. P09005.Google Scholar
  29. 29.
    S. Park and K. Schulten (2004). J. Chem. Phys., 120, p. 5946.CrossRefADSGoogle Scholar
  30. 30.
    F. Douarche, S. Ciliberto, A. Petrosyan, and I. Rabbiosi (2005). Europhys. Lett., 70, p. 593.CrossRefADSGoogle Scholar
  31. 31.
    D. Collin et al. “Experimental test of the Crooks Fluctuation Theorem”, Nature (accepted for publication).Google Scholar
  32. 32.
    For cyclic thermodynamic processes, in which the work parameter returns to its initial value (A = B, i.e. ΔG = 0), (10.4) reduces to a result derived earlier by G.N. Bochkov and Yu. E. Kuzovlev, Zh. Eksp. Teor. Fiz., 72, p. 238 (1977) [Sov. Phys. – JETP, 45, p. 125 (1977)]; Physica, 106A, p. 443 (1981); Physica, 106A, p. 480 (1981).ADSGoogle Scholar
  33. 33.
    J.W. Gibbs (1902). Elementary Principles in Statistical Mechanics. Scribner’s, New York, 42–44.zbMATHGoogle Scholar
  34. 34.
    G.E. Uhlenbeck and G.W. Ford (1963). Lectures in Statistical Mechanics. Americal Mathematical Society, Providence. Chap. I, Sect. 7.Google Scholar
  35. 35.
    J.M. Schurr and B.S. Fujimoto (2003). J. Phys. Chem. B, 107, p. 14007.CrossRefGoogle Scholar
  36. 36.
    O. Narayan and A. Dhar (2004). J. Phys. A, 37, p. 63.zbMATHCrossRefADSMathSciNetGoogle Scholar
  37. 37.
    C.B.P. Finn (1993). Thermal Physics (2nd Ed.). Chapman and Hall, London.Google Scholar
  38. 38.
    H. Goldstein (1980). Classical Mechanics (2nd Ed.). Addison-Wesley, Reading, Massachusetts.zbMATHGoogle Scholar
  39. 39.
    D. Chandler (1987). Introduction to Modern Statistical Mechanics, Oxford University, New York, p. 137.Google Scholar
  40. 40.
    J. Gore, F. Ritort, and C. Bustamante (2003). Proc. Natl. Acad. Sci. (USA), 100, p. 12564.zbMATHCrossRefADSMathSciNetGoogle Scholar
  41. 41.
    C. Jarzynski (2006), Phys. Rev. E., 73, p. 046105.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • C. Jarzynski
    • 1
  1. 1.Theoretical Division, T-13, MS B213Los Alamos National LaboratoryLos Alamos

Personalised recommendations