Skip to main content

Nonequilibrium Fluctuations of a Single Biomolecule

  • Chapter
Controlled Nanoscale Motion

Part of the book series: Lecture Notes in Physics ((LNP,volume 711))

Abstract

In recent years it has been realized that equilibrium information is subtly encoded in the fluctuations of a microscopic system that is driven away from equilibrium, such as a biomolecule stretched irreversibly using optical tweezers. The key to decoding this information resides in the external work, W, performed on the system. I will give a brief summary of three theoretical predictions that relate nonequilibrium statistical fluctuations in W to equilibrium properties of the system, and which remain valid even in the far-from-equilibrium limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.C. Tolman (1938). The Principles of Statistical Mechanics. Oxford.

    Google Scholar 

  2. L. Onsager (1931). Phys. Rev., 37, p. 405; Ibid. (1931). 38, p. 2265. L. Onsager and S. Machlup (1953). Phys. Rev., 91, p. 1505.

    Article  MATH  ADS  Google Scholar 

  3. C. Bustamante, J. Liphardt, and F. Ritort (2005). Physics Today, 58, p. 43.

    Article  Google Scholar 

  4. D.J. Evans, E.G.D. Cohen, and G.P. Morriss (1993). Phys. Rev. Lett., 71, p. 2401.

    Article  MATH  ADS  Google Scholar 

  5. D.J. Evans and D.J. Searles (1994). Phys. Rev. E, 50, p. 1645.

    Article  ADS  Google Scholar 

  6. G. Gallavotti and E.G.D. Cohen (1995). J. Stat. Phys., 80, p. 931.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. J. Kurchan (1998). J. Phys. A, 31, p. 3719.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. J.L. Lebowitz and H. Spohn (1999). J. Stat. Phys., 95, p. 333.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Maes (1999). J. Stat. Phys., 95, p. 367.

    Article  MATH  MathSciNet  Google Scholar 

  10. D.J. Evans and D. Searles (2002). Adv. Phys., 51, p. 1529.

    Article  ADS  Google Scholar 

  11. G.M. Wang et al. (2002). Phys. Rev. Lett., 89, p. 050601.

    Article  ADS  Google Scholar 

  12. D.M. Carberry et al. (2004). Phys. Rev. Lett., 92, p. 140601.

    Article  ADS  Google Scholar 

  13. R. van Zon, S. Ciliberto, and E.G.D. Cohen (2004). Phys. Rev. Lett., 92, p. 130601.

    Article  Google Scholar 

  14. C. Jarzynski (1997). Phys. Rev. Lett., 78, p. 2690.

    Article  ADS  Google Scholar 

  15. C. Jarzynski (1997). Phys. Rev. E, 56, p. 5018.

    Article  ADS  Google Scholar 

  16. G.E. Crooks (1998). J. Stat. Phys., 90, p. 1481.

    Article  MATH  MathSciNet  Google Scholar 

  17. G.E. Crooks (1999). Phys. Rev. E, 60, p. 2721.

    Article  ADS  Google Scholar 

  18. G.E. Crooks (2000). Phys. Rev. E, 61, p. 2361.

    Article  ADS  Google Scholar 

  19. A. Yukawa (2000). J. Phys. Soc. Japan, 69, p. 2367.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. G. Hummer and A. Szabo (2001). 1Proc. Natl. Acad. Sci. (USA), 98, p. 3658.

    Article  Google Scholar 

  21. C. Jarzynski (2002). In Dynamics of Dissipation, P. Garbaczewski and R. Olkiewicz, eds. Springer, Berlin.

    Google Scholar 

  22. J. Liphardt et al. (2002). Science, 296, p. 1832.

    Article  ADS  Google Scholar 

  23. D.J. Evans (2003). Mol. Phys., 101, p. 1551.

    Article  ADS  Google Scholar 

  24. S. Mukamel (2003). Phys. Rev. Lett., 90, p. 170604.

    Article  ADS  Google Scholar 

  25. F. Ritort (2003). Séminaire Poincaré, 2, p. 193.

    Google Scholar 

  26. S.X. Sun (2003). J. Chem. Phys., 118, p. 5769.

    Article  ADS  Google Scholar 

  27. E.G.D. Cohen and D. Mauzerall (2004). J. Stat. Mech.: Theor. Exp. P07006.

    Google Scholar 

  28. C. Jarzynski (2004). J. Stat. Mech.: Theor. Exp. P09005.

    Google Scholar 

  29. S. Park and K. Schulten (2004). J. Chem. Phys., 120, p. 5946.

    Article  ADS  Google Scholar 

  30. F. Douarche, S. Ciliberto, A. Petrosyan, and I. Rabbiosi (2005). Europhys. Lett., 70, p. 593.

    Article  ADS  Google Scholar 

  31. D. Collin et al. “Experimental test of the Crooks Fluctuation Theorem”, Nature (accepted for publication).

    Google Scholar 

  32. For cyclic thermodynamic processes, in which the work parameter returns to its initial value (A = B, i.e. ΔG = 0), (10.4) reduces to a result derived earlier by G.N. Bochkov and Yu. E. Kuzovlev, Zh. Eksp. Teor. Fiz., 72, p. 238 (1977) [Sov. Phys. – JETP, 45, p. 125 (1977)]; Physica, 106A, p. 443 (1981); Physica, 106A, p. 480 (1981).

    ADS  Google Scholar 

  33. J.W. Gibbs (1902). Elementary Principles in Statistical Mechanics. Scribner’s, New York, 42–44.

    MATH  Google Scholar 

  34. G.E. Uhlenbeck and G.W. Ford (1963). Lectures in Statistical Mechanics. Americal Mathematical Society, Providence. Chap. I, Sect. 7.

    Google Scholar 

  35. J.M. Schurr and B.S. Fujimoto (2003). J. Phys. Chem. B, 107, p. 14007.

    Article  Google Scholar 

  36. O. Narayan and A. Dhar (2004). J. Phys. A, 37, p. 63.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. C.B.P. Finn (1993). Thermal Physics (2nd Ed.). Chapman and Hall, London.

    Google Scholar 

  38. H. Goldstein (1980). Classical Mechanics (2nd Ed.). Addison-Wesley, Reading, Massachusetts.

    MATH  Google Scholar 

  39. D. Chandler (1987). Introduction to Modern Statistical Mechanics, Oxford University, New York, p. 137.

    Google Scholar 

  40. J. Gore, F. Ritort, and C. Bustamante (2003). Proc. Natl. Acad. Sci. (USA), 100, p. 12564.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. C. Jarzynski (2006), Phys. Rev. E., 73, p. 046105.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Jarzynski, C. (2007). Nonequilibrium Fluctuations of a Single Biomolecule. In: Linke, H., Månsson, A. (eds) Controlled Nanoscale Motion. Lecture Notes in Physics, vol 711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49522-3_10

Download citation

Publish with us

Policies and ethics