Advertisement

Navigation on a Micron Scale

  • H.C. Berg
Part of the Lecture Notes in Physics book series (LNP, volume 711)

Abstract

E. coli is a bacterium 1 μm in diameter. It swims in a nutrient medium, counting molecules of interest as it goes along. On the basis of these counts, it accumulates in regions that it deems more favorable. How does nature design, construct, and operate such a nanomachine?

Keywords

Kinase Activity Receptor Occupancy Micron Scale Ambient Concentration Fractional Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Adler (1965). Chemotaxis in Escherichia coli. Cold Spring Harbor Symp. Quant. Biol., 30, pp. 289–292.Google Scholar
  2. 2.
    H.C. Berg (1975). Chemotaxis in bacteria. Ann. Rev. Biophys. Bioeng., 4, pp. 119–136.CrossRefGoogle Scholar
  3. 3.
    H.C. Berg (2004). E. coli in Motion. New York: Springer-Verlag.Google Scholar
  4. 4.
    H.C. Berg and R.A. Anderson (1973). Bacteria swim by rotating their flagellar filaments. Nature, 245, pp. 380–382.CrossRefADSGoogle Scholar
  5. 5.
    J. Adler (1973). A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J. Gen. Microbiol., 74, pp. 77–91.Google Scholar
  6. 6.
    J. Adler (1969). Chemoreceptors in bacteria. Science, 166, pp. 1588–1597.CrossRefADSGoogle Scholar
  7. 7.
    H.C. Berg and D.A. Brown (1972). Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature, 239, pp. 500–504.CrossRefADSGoogle Scholar
  8. 8.
    R.M. Macnab, and M.K. Ornston (1977). Normal-to-curly flagellar transitions and their role in bacterial tumbling: Stabilization of an alternative quaternary structure by mechanical force. J. Mol. Biol., 112, pp. 1–30.CrossRefGoogle Scholar
  9. 9.
    L. Turner, W.S. Ryu, and H.C. Berg (2000). Real-time imaging of fluorescent flagellar filaments. J. Bacteriol., 182, pp. 2793–2801.CrossRefGoogle Scholar
  10. 10.
    S.H. Larsen, R.W. Reader, E.N. Kort, W. Tso, and J. Adler (1974). Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature, 249, pp. 74–77.CrossRefADSGoogle Scholar
  11. 11.
    S.M. Block, J.E. Segall, and H.C. Berg (1982). Impulse responses in bacterial chemotaxis. Cell, 31, pp. 215–226.CrossRefGoogle Scholar
  12. 12.
    J.E. Segall, S.M. Block, and H.C. Berg (1986). Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA, 83, pp. 8987–8991.CrossRefADSGoogle Scholar
  13. 13.
    M. Silverman and M. Simon (1974). Flagellar rotation and the mechanism of bacterial motility. Nature, 249, pp. 73–74.CrossRefADSGoogle Scholar
  14. 14.
    R.M. Berry and H.C. Berg (1999). Torque generated by the flagellar motor of Escherichia coli while driven backward. Biophys. J., 76, pp. 580–587.ADSCrossRefGoogle Scholar
  15. 15.
    H.C. Berg (2003). The rotary motor of bacterial flagella. Annu. Rev. Biochem., 72, pp. 19–54.CrossRefGoogle Scholar
  16. 16.
    D.F. Blair (2003). Flagellar movement driven by proton translocation. FEBS Lett., 545, pp. 86–95.CrossRefGoogle Scholar
  17. 17.
    R.M. Macnab (2004). Type III flagellar protein export and flagellar assembly. Biochim. Biophys. Acta, 1694, pp. 207–217.CrossRefGoogle Scholar
  18. 18.
    H.C. Berg and L. Turner (1993). Torque generated by the flagellar motor of Escherichia coli. Biophys. J., 65, pp. 2201–2216.ADSCrossRefGoogle Scholar
  19. 19.
    X. Chen and H.C. Berg (2000). Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys. J., 78, pp. 1036–1041.CrossRefADSGoogle Scholar
  20. 20.
    K.K. Kim, H. Yokota, and S.-H. Kim (1999). Four helical bundle structure of the cytoplasmic doman of a serine chemotaxis receptor. Nature, 400, pp. 787–792.CrossRefADSGoogle Scholar
  21. 21.
    V. Sourjik and H.C. Berg (2004). Functional interactions between receptors in bacterial chemotaxis. Nature, 428, pp. 437–441.CrossRefADSGoogle Scholar
  22. 22.
    A. Vaknin and H.C. Berg (2004). Single-cell FRET imaging of phosphatase activity in the Escherichia coli chemotaxis system. Proc. Natl. Acad. Sci. USA, 101, pp. 17072–17077.CrossRefADSGoogle Scholar
  23. 23.
    V. Sourjik and H.C. Berg (2002a). Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA, 99, pp. 12669–12674.CrossRefADSGoogle Scholar
  24. 24.
    V. Sourjik and H.C. Berg (2002b). Receptor sensitivity in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA, 99, pp. 123–127.CrossRefADSGoogle Scholar
  25. 25.
    J.S. Parkinson, P. Ames, and C.A. Studdert (2005). Collaborative signaling by bacterial chemoreceptors. Curr. Opin. Microbiol., 8, pp. 1–6.CrossRefGoogle Scholar
  26. 26.
    V. Sourjik (2004). Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol., 12, pp. 569–576.CrossRefGoogle Scholar
  27. 27.
    T.A.J. Duke, N. Le Novère, and D. Bray (2001). Conformational spread in a ring of proteins: a stochastic approach to allostery. J. Mol. Biol., 308, pp. 541–553.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • H.C. Berg
    • 1
  1. 1.Departments of Molecular and Cellular Biology and of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations