Skip to main content

Anytime Lower Bounds for Constraint Violation Minimization Problems

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming — CP98 (CP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1520))

Abstract

Constraint Violation Minimization Problems arise when dealing with over-constrained CSPs. Unfortunately, experiments and practice show that they quickly become too large and too difficult to be optimally solved. In this context, multiple methods (limited tree search, heuristic or stochastic local search) are available to produce non-optimal, but good quality solutions, and thus to provide the user with anytime upper bounds of the problem optimum. On the other hand, few methods are available to produce anytime lower bounds of this optimum. In this paper, we explore some ways of producing such bounds. All of them are algorithmic variants of a Branch and Bound search. More specifically, we show that a new algorithm, resulting from a combination of the Russian Doll Search and Iterative Deepening algorithms, clearly outperforms five known algorithms and allows high lower bounds to be rapidly produced

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie. Semiring-based CSPs and Valued CSPs: Basic Properties and Comparison. In M. Jampel, E. Freuder, and M. Maher, editors, Over-Constrained Systems (LNCS 1106, Selected papers from the Workshop on Over-Constrained Systems at CP-95, reprints and background papers), pages 111–150. Springer, 1996.

    Google Scholar 

  2. S. Bistarelli, U. Montanari, and F. Rossi. Constraint Solving over Semirings. In Proc. of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), pages 624–630, Montréal, Canada, 1995.

    Google Scholar 

  3. S. de Givry, G. Verfaillie, and T. Schiex. Bounding the Optimum of Constraint Optimization Problems. In Proc. of the 3rd International Conference on Principles and Practice of Constraint Programming (CP-97), Schloss Hagenberg, Austria, 1997.

    Google Scholar 

  4. H. Fargier, D. Dubois, and H. Prade. Problèmes de satisfaction de contraintes flexibles: une approche égalitariste. Revue d’Intelligence Artificielle, 9(3):311–354, 1995.

    Google Scholar 

  5. H. Fargier and J. Lang. Uncertainty in Constraint Satisfaction Problems: a Probabilistic Approach. In Proc. of the European Conference on Symbolic and Quantitavive Approaches of Reasoning under Uncertainty (ECSQARU-93), pages 97–104, Grenade, Spain, 1993.

    Google Scholar 

  6. E. Freuder and R. Wallace. Partial Constraint Satisfaction. Artificial Intelligence, 58:21–70, 1992.

    Article  MathSciNet  Google Scholar 

  7. S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by Simulated Annealing. Science, 220, 1983.

    Google Scholar 

  8. R. Korf. Depth-First Iterative Deepening: An Optimal Admissible Tree Search. Artificial Intelligence, 27:97–109, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Korf. Linear-space Best-first Search. Artificial Intelligence, 62:41–78, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Larrosa and P. Meseguer. Expoiting the Use of DAC in MAX-CSP. In Proc. of the 2nd International Conference on Principles and Practice of Constraint Programming (CP-96, LNCS 1118), pages 308–322, Cambridge, MA, USA, 1996.

    Google Scholar 

  11. J. Larrosa and P. Meseguer. Phase Transition in MAX-CSP. In Proc. of the 12th European Conference on Artificial Intelligence (ECAI-96), pages 190–194, Budapest, Hungary, 1996.

    Google Scholar 

  12. C. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1994.

    Google Scholar 

  13. J. Pearl. HEURISTICS, Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley Publishing Company, 1984.

    Google Scholar 

  14. A. Rosenfeld, R. Hummel, and S. Zucker. Scene Labeling by Relaxation Operations. IEEE Transactions on Systems, Man, and Cybernetics, 6(6):173–184, 1976.

    Article  MathSciNet  Google Scholar 

  15. T. Schiex. Possibilistic Constraint Satisfaction Problems or “How to handle soft constraints?”. In Proc. of the 8th International Conference on Uncertainty in Artificial Intelligence (UAI-92), Stanford, CA, USA, 1992.

    Google Scholar 

  16. T. Schiex, H. Fargier, and G. Verfaillie. Problèmes de satisfaction de contraintes valués. Revue d’Intelligence Artificielle, 11(3):339–373, 1997.

    MATH  Google Scholar 

  17. B. Smith. Phase Transition and the Mushy Region in Constraint Satisfaction Problems. In Proc. of the 11th European Conference on Artificial Intelligence (ECAI-94), pages 100–104, Amsterdam, The Netherlands, 1994.

    Google Scholar 

  18. G. Verfaillie and S. de Givry. Algorithmic problems and solutions in the Valued Constraint Satisfaction Problem framework. In Proc. of the EUFIT-97 session on “Valued Constraint Satisfaction”, Aachen, Germany, 1997.

    Google Scholar 

  19. G. Verfaillie, M. LemaÎtre, and T. Schiex. Russian Doll Search for Solving Constraint Optimization Problems. In Proc. of the 13th National Conference on Artificial Intelligence (AAAI-96), pages 181–187, Portland, OR, USA, 1996.

    Google Scholar 

  20. R. Wallace. Directed Arc Consistency Preprocessing. In Proc. of the ECAI-94 Workshop on Constraint Processing (LNCS 923), pages 121–137. Springer, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cabon, B., de Givry, S., Verfaillie, G. (1998). Anytime Lower Bounds for Constraint Violation Minimization Problems. In: Maher, M., Puget, JF. (eds) Principles and Practice of Constraint Programming — CP98. CP 1998. Lecture Notes in Computer Science, vol 1520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49481-2_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-49481-2_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65224-3

  • Online ISBN: 978-3-540-49481-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics