An Optimal Parallel Algorithm for the Perfect Dominating Set Problem on Distance-Hereditary Graphs

  • Sun-Yuan Hsieh
  • Gen-Huey Chen
  • Chin-Wen Ho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1538)


In the literature, there are quite a few sequential and parallel algorithms for solving problems on distance-hereditary graphs. With an n-vertex distance-hereditary graph G, we show that the perfect dominating set problem on G can be solved in O(log2 n) time using O(n+m) procesors on a CREW PRAM


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka, A simple parallel tree contraction algorithm. Journal of Algorithms., 10, pp. 287–302, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    H. J. Bandelt and H. M. Mulder. Distance-hereditary graphs. Journal of Combinatorial Theory Series B, 41(1):182–208, Augest 1989.Google Scholar
  3. 3.
    C. Berge. Graphs and hypergraphs. North-Holland, Amsterdam, 1973.zbMATHGoogle Scholar
  4. 4.
    N. Biggs. Perfect codes in graphs. J. Combin. Theory Ser. B, 15:289–296, 1973.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. Brandstädt and F. F. Dragan, A linear time algorithm for connected γ-domination and Steiner tree on distance-hereditary graphs, Networks, 31:177–182, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. S. Chang and Y. C. Liu. Polynomial algorithm for the weighted perfect domination problems on chordal graphs and split graphs. Information Processing Letters, 48:205–210, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    G. J. Chang, C. Pandu Rangan, and S. R. Coorg. Weighted independent perfect domination on cocomparability graphs. Discrete Applied Mathematics, 63:215–222, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. S. Chang, S. Y. Hsieh, and G. H. Chen. Dynamic Programming on Distance-Hereditary Graphs. Proceedings of 7th International Symposium on Algorithms and Computation, ISAAC’97, LNCS 1350, pp. 344–353.Google Scholar
  9. 9.
    E. Dahlhaus, “Optimal (parallel) algorithms for the all-to-all vertices distance problem for certain graph classes,” Lecture notes in computer science 726, pp. 60–69.Google Scholar
  10. 10.
    E. Dahlhaus. Efficient parallel recognition algorithms of cographs and distance-hereditary graphs. Discrete applied mathematics, 57(1):29–44, February 1995.Google Scholar
  11. 11.
    A. D’atri and M. Moscarini. Distance-hereditary graphs, steiner trees, and connected domination. SIAM Journal on Computing, 17(3):521–538, June, 1988.Google Scholar
  12. 12.
    F. F. Dragan, Dominating cliques in distance-hereditary graphs, Algorithm Theory-SWAT’94 “4th Scandinavian Workshop on Algorithm Theory, LNCS 824, Springer, Berlin, pp. 370–381, 1994.Google Scholar
  13. 13.
    M. C. Golumbic. Algorithmic graph theory and perfect graphs, Academic press, New York, 1980.zbMATHGoogle Scholar
  14. 14.
    P. L. Hammer and F. Maffray. Complete separable graphs. Discrete applied mathematics, 27(1):85–99, May 1990.Google Scholar
  15. 15.
    X. He. Efficient parallel algorithms for solving some tree problems. Proc. 24th Allerton Conference on Communication, Control, and Computing, 777–786, 1986.Google Scholar
  16. 16.
    X. He. Efficient parallel algorithms for series-parallel graphs. Journal of Algorithms, 12:409–430, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    X. He and Y. Yesha. Binary tree algebraic computation and parallel algorithms for simple graphs. Journal of Algorithms, 9:92–113, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    E. Howorka. A characterization of distance-hereditary graphs. Quarterly Journal of Mathematics (Oxford), 28(2):417–420. 1977.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    S.-y. Hsieh, C. W. Ho, T.-s. Hsu, M. T. Ko, and G. H. Chen. Efficient parallel algorithms on distance-hereditary graphs. Parallel Processing Letters, to appear. A preliminary version of this paper is in Proceedings of the International Conference on Parallel Processing, pp. 20–23, 1997.Google Scholar
  20. 20.
    S.-y. Hsieh, Parallel decomposition of Distance-Hereditary Graphs with its application. Manuscript, 1998.Google Scholar
  21. 21.
    S.-y. Hsieh, C. W. Ho, T.-s. Hsu, M. T. Ko, and G. H. Chen. A new simple tree contraction scheme and its application on distance-hereditary graphs. Proceedings of Irregular’98, LNCS, Springer-Verlag, to appear.Google Scholar
  22. 22.
    S.-y. Hsieh, C. W. Ho, T.-s. Hsu, M. T. Ko, and G. H. Chen. Characterization of efficiently solvable problems on distance-hereditary Graphs. Proceedings of 8th International Symposium on Algorithms and Computation, ISAAC’98, Springer-Verlag, to appear.Google Scholar
  23. 23.
    M. Livingston and Q. F. Stout. Perfect dominating sets. Congr. Numer., 79:187–203, 1990.zbMATHMathSciNetGoogle Scholar
  24. 24.
    Falk Nicolai. Hamiltonian problems on distance-hereditary graphs. Technique report, Gerhard-Mercator University, Germany, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Sun-Yuan Hsieh
    • 1
  • Gen-Huey Chen
    • 1
  • Chin-Wen Ho
    • 2
  1. 1.Department of Computer Science and Information EngineeringNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Computer Science and Information EngineeringNational Central UniversityChung-LiTaiwan

Personalised recommendations