Skip to main content

A Generic Model for Perception-Action Systems. Analysis of a Knowledge-Based Prototype

  • Conference paper
  • First Online:
Book cover Computer Vision Systems (ICVS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1542))

Included in the following conference series:

  • 507 Accesses

Abstract

In this paper we propose a general layered model for the design of perception-action system. We discuss some desirable properties such a system must support to meet the severe constrains imposed by the expected behaviour of reactive systems. SVEX, a knowledge-based multilevel system, is used as a test prototype to implement and evaluate those considerations.

Additionally two aspects of the system are analyzed in detail in order to prove the benefits of the design criteria used in SVEX. These aspects refer to learning and distribution of computations. Finally, the results of some SVEX applications are shown.

This research is sponsored in part by Spanish CICYT under project TAP95-0288. The authors would also like to thank reviewers for their comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloimonos J., Weis I., “ActiveVision”, Int. Journal of Computer Vision, 2, (1988), 333–356.

    Google Scholar 

  2. Bajcsi R., “ActivePerception”, Proc. of the IEEE, 76, 8, (1988), 996–1005.

    Google Scholar 

  3. Blum A. L., Langley P., “Selection of relevant features and examples in machine learning”, Artificial Intelligence, 97:245–271, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  4. Buchanan B., “Can Machine Learning Offer Anything to Expert Systems?”, Machine Learning, 4, pp. 251–254, 1989.

    Google Scholar 

  5. Cabrera J., “Sistema Basado en Conocimiento para Segmentación de Imágenes. Desarrollos y Aplicaciones”, Doctoral Dissertation, Universidad de Las Palmas de Gran Canaria, 1994.

    Google Scholar 

  6. Cabrera J., Hernández F.M., Falcón A., Méndez J., “Contributions to the symbolic processing of segments in computer vision”, Mathware and Soft Computing, III(3):403–413, 1996.

    Google Scholar 

  7. Cohn D., Atlas L., Ladner R., “Improving Generalization with Active Learning”, Machine Learning, 15, pp. 201–221, 1994.

    Google Scholar 

  8. Devijver P. A., Kittler J., Pattern Recognition: A Statistical Approach. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

    Google Scholar 

  9. Dubois D., Prade H., Yager R. R., Introduction in Readings in Fuzzy Sets for Intelligent Systems, Morgan Kaufmann Pub., (1993), 1–20.

    Google Scholar 

  10. Duda R., Hart P., Pattern Classification and Scene Analysis, Wiley, 1973.

    Google Scholar 

  11. Fukunaga K., Introduction to Statistical Pattern Recognition. Academic Press Inc., 2nd edition, 1990.

    Google Scholar 

  12. Geist A., PVM: Parallel Virtual Machine-A Users’ Guide and Tutorial for Net-worked Parallel Computing, The MIT Press, 1994.

    Google Scholar 

  13. Gordon J., Shortliffe E.H., “The Dempster-Shafer Theory of Evidence”, in Rule-Based Expert Systems, Buchanan and Shortliffe (Eds.), (1984), 272–292.

    Google Scholar 

  14. Koller D., Sahami M., “Toward optimal feature selection”, Proc. of the 13th Int. Conf. on Machine Learning, pages 284–292. Morgan Kaufmann, 1996.

    Google Scholar 

  15. Krisnapuram R., Keller J.M., “Fuzzy Set Theoretic Approach to Computer Vision: An Overview”, in Fuzzy Logic Technology and Applications, IEEE Tech. Activities Board, (1994), 25–32.

    Google Scholar 

  16. Hernández D., Cabrera J., “Distribution of Image Processing Application on a Heterogeneous Workstation Network. Modeling, Load-balancing and Experimental Results”, SPIE-97 Parallel on Distributed Methods for Image Processing, vol. 3166, pp. 170–179, July 1997, San Diego.

    Google Scholar 

  17. Huntsberger T.L., Rangarajan C., Jayaramamurthy S.N., “Representation of Uncertainty in Computer Vision using Fuzzy Sets”, IEEE Trans. Comput., 35, 2, (1986), 145–156.

    Article  Google Scholar 

  18. Lee. S., Kil R. M., “Multilayer Feedforward Potential Function Network”, Proc. of 2nd. Int. Conf. on Neural Networks, vol I, pp. 161–171, 1988.

    Google Scholar 

  19. Lorenzo J., Hernández M., Méndez J., “An information theory-based measure to assess feature subsets”, Preprints of the VII National Symposium on Pattern Recognition and Image Analysis (AERFAI’97), volume 2, pages 38–39, 1997.

    Google Scholar 

  20. Lorenzo J., Hernández M., J. Méndez. “A measure based on information theory for attribute selection”, (IBERAMIA-98) 6th Ibero-American Conference on Artificial Intelligence, Lisbon, Portugal, Lectures Notes in Artificial Intelligence, Springer Verlag, October 1998.

    Google Scholar 

  21. Méndez J., Falcón A., Hernández F.M., Cabrera J., “A Development Tool for Computer Vision Systems at Pixel Level”, Cybernetics & Systems, 25, 2, (1994), 289–316.

    Article  Google Scholar 

  22. Munro D., “Performance of Multiprocessor Communications Networks”, Doctoral Dissertation, Dep. of Electronics, University of York, 1994.

    Google Scholar 

  23. Niemann H., Brünig H., Salzbrunn R., Schröder S., “A Knowledge-Based Vision System for Industrial Applications”, Machine Vision and Applications, 3, (1990), 201–229.

    Article  Google Scholar 

  24. Pennington R., “Distributed and Heterogeneous Computing”, Cluster Computing Lecture Series, Pittsburg Supercomputing Center 1995.

    Google Scholar 

  25. Poggio T., Girosi F., “Networks for approximation and learning”, Proceedings of the IEEE, 78:1481–1487, 1990.

    Article  Google Scholar 

  26. Quinlan J.R., “Induction of decision trees”, Machine Learning, 1:81–106, 1986.

    Google Scholar 

  27. Renals S., Rohwer R., “Phoneme Classification Experiments using Radial Basis Functions”, Proc. Int. Conf. on Neural NetworksI, pp. 416–467, 1989.

    Google Scholar 

  28. Rosenblatt F., “On the Convergence of Reinforcement Procedures in Simple Perceptrons”, Cornell Aeronautical Report VG-1196-G-4, Buffalo, NY, 1960.

    Google Scholar 

  29. Risemann E.M., Hanson A.R., “A Methodology for the Development of General Knowledge-Based Vision Systems”, in Vision, Brain and Cooperative Computation, MIT Press, Cambridge Mass., (1987), 285–328.

    Google Scholar 

  30. Rumelhart D. E., Hinton G. E., Willians R. J., “Learning Representations by Back-Propagating Errors”, Nature, 323, pp. 533–536, 1986.

    Article  Google Scholar 

  31. Vincent L., Soille P., “Watersheds in Digital Spaces: An efficient algorithm based on immersion simulations”. IEEE Trans. on Pattern Anal. and Mach. Intell., Vol 13, n 6, pp. 583–598, 1991.

    Article  Google Scholar 

  32. Wilson R., Spann M., Image Segmentation and Uncertainty, Research Studies Press Ltd., 1988.

    Google Scholar 

  33. Zadeh L.A., “PRUF-A meaning representation language for natural languages”, in Fuzzy Reasoning and its Applications, Academic Press, London, (1981), 1–39.

    Google Scholar 

  34. Zadeh L.A., “Commonsense Knowledge Representation based on Fuzzy Logic”, IEEE Computer, 16, 10, (1983), 61–65.

    Google Scholar 

  35. Zhang B., “Accelerated Learning by Active Example Selection”, International Journal of Neural Networks, vol. 5(1), pp. 67–75, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hernández-Sosa, D., Lorenzo-Navarro, J., Hernández-Tejera, M., Cabrera-Gámez, J., Falcón-Martel, A., Méndez-Rodríguez, J. (1999). A Generic Model for Perception-Action Systems. Analysis of a Knowledge-Based Prototype. In: Computer Vision Systems. ICVS 1999. Lecture Notes in Computer Science, vol 1542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49256-9_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-49256-9_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65459-9

  • Online ISBN: 978-3-540-49256-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics