Skip to main content

Elliptic Curve Public-Key Cryptosystems — An Introduction

  • Chapter
  • First Online:
State of the Art in Applied Cryptography

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1528))

Abstract

We give a brief introduction to elliptic curve public-key cryptosystems. We explain how the discrete logarithm in an elliptic curve group can be used to construct cryptosystems. We also focus on practical aspects such as implementation, standardization and intellectual property.

F.W.O.-Flanders research assistant, sponsored by the Fund for Scientific Research — Flanders (Belgium).

F.W.O.-Flanders postdoctoral researcher, sponsored by the Fund for Scientific Research — Flanders (Belgium).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANSI X9.62-199x: Public-Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), November 11, 1997.

    Google Scholar 

  2. A. Atkin and F. Morain, “Elliptic curves and primality proving,” Mathematics of Computation, Vol. 61 (1993), pp. 29–68.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Bailey and C. Paar, “Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms,” Advances in Cryptology, Proc. Crypto’98, LNCS 1462, H. Krawczyk, Ed., Springer-Verlag, 1998, pp. 472–485.

    Chapter  Google Scholar 

  4. E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem and J. Vandewalle, “A fast software implementation for arithmetic operations in GF(2n),” Advances in Cryptology, Proc. Asiacrypt’96, LNCS 1163, K. Kim and T. Matsumoto, Eds., Springer-Verlag, 1996, pp. 65–76.

    Chapter  Google Scholar 

  5. E. De Win, S. Mister, B. Preneel and M. Wiener, “On the performance of signature schemes based on elliptic curves,” Proceedings of the ANTS III conference, LNCS 1423, J. Buhler, Ed., Springer-Verlag, 1998, pp. 252–266.

    Google Scholar 

  6. D.M. Gordon, “A survey of fast exponentiation methods,” Journal of Algorithms, Vol. 27, pp. 129–146, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Guajardo and C. Paar, “Efficient algorithms for elliptic curve cryptosystems,” Advances in Cryptology, Proc. Crypto’97, LNCS 1294, B. Kaliski, Ed., Springer-Verlag, 1997, pp. 342–356.

    Chapter  Google Scholar 

  8. G. Harper, A. Menezes and S. Vanstone, “Public-key cryptosystems with very small key length, ”Advances in Cryptology, Proc. Eurocrypt’92, LNCS 658, R.A. Rueppel, Ed., Springer-Verlag, 1993, pp. 163–173.

    Google Scholar 

  9. IEEE P1363: Editorial Contribution to Standard for Public-Key Cryptography, July 27, 1998.

    Google Scholar 

  10. D. Knuth, The Art of Computer Programming, Vol. 2, Semi-Numerical Algorithms, 2nd Edition, Addison-Wesley, Reading, Mass., 1981.

    Google Scholar 

  11. ISO/IEC 9796-2, “Information technology — Security techniques — Digital signature schemes giving message recovery, Part 2: Mechanisms using a hash-function,” 1997.

    Google Scholar 

  12. N. Koblitz,“Elliptic curve cryptosystems,” Mathematics of Computation, Vol. 48, no. 177 (1987), pp. 203–209.

    Google Scholar 

  13. H. W. Lenstra Jr., “Factoring integers with elliptic curves,” Annals of Mathematics, Vol. 126 (1987), pp. 649–673.

    Article  MathSciNet  Google Scholar 

  14. A. Menezes, Elliptic Curve Public-Key Cryptosystems, Kluwer Academic Publishers, 1993.

    Google Scholar 

  15. A. Menezes, T. Okamoto and S. Vanstone, “Reducing elliptic curve logarithms to logarithms in a finite field,” IEEE Transactions on Information Theory, Vol. 39 (1993), pp. 1639–1646.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997.

    Google Scholar 

  17. V.S. Miller, “Use of elliptic curves in cryptography,” Advances in Cryptology Proc. Crypto’85, LNCS 218, H.C. Williams, Ed., Springer-Verlag, 1985, pp. 417–426.

    Chapter  Google Scholar 

  18. A. Miyaji, T. Ono and H. Cohen, “Efficient elliptic curve exponentiation,” Proceedings of ICICS’97, LNCS 1334, Y. Han, T. Okamoto and S. Qing, Eds., Springer-Verlag, 1997, pp. 282–290.

    Google Scholar 

  19. R. Mullin, I. Onyszchuk, S. Vanstone and R. Wilson, “Optimal normal bases in GF(pn),” Discrete Applied Mathematics, Vol. 22 (1988/1989), pp. 149–161.

    Article  MathSciNet  Google Scholar 

  20. http://grouper.ieee.org/groups/1363/.

  21. T. Satoh and K. Araki, “Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves,” Commentarii Math. Univ. St. Pauli, Vol. 47 (1998), pp. 81–92.

    MATH  MathSciNet  Google Scholar 

  22. N. Smart, “The discrete logarithm problem on elliptic curves of trace one,” preprint, 1998.

    Google Scholar 

  23. R. Schroeppel, H. Orman, S. O’Malley and O. Spatscheck, “Fast key exchange with elliptic curve systems,” Advances in Cryptology, Proc. Crypto’95, LNCS 963, D. Coppersmith, Ed., Springer-Verlag, 1995, pp. 43–56.

    Google Scholar 

  24. M. Wiener, “Performance comparison of public-key cryptosystems,” CryptoBytes, Vol. 4., No. 1, Summer 1998, pp. 1–5.

    Google Scholar 

  25. http://www.x9.org/.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Win, E., Preneel, B. (1998). Elliptic Curve Public-Key Cryptosystems — An Introduction. In: State of the Art in Applied Cryptography. Lecture Notes in Computer Science, vol 1528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49248-8_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-49248-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65474-2

  • Online ISBN: 978-3-540-49248-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics