Skip to main content

Quantum Computation with Linear Optics

  • Conference paper
  • First Online:
Quantum Computing and Quantum Communications (QCQC 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1509))

Abstract

We present a constructive method to translate small quantum circuits into their optical analogues, using linear components of present-day quantum optics technology only. These optical circuits perform precisely the computation that the quantum circuits are designed for, and can thus be used to test the performance of quantum algorithms. The method relies on the representation of several quantum bits by a single photon, and on the implementation of universal quantum gates using simple optical components (beam splitters, phase shifters, etc.). The optical implementation of Brassard et al.’s teleportation circuit, a non-trivial 3-bit quantum computation, is presented as an illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, in Proc. of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society Press, New York, 1994), pp. 124–134.

    Chapter  Google Scholar 

  2. D. G. Cory, M. D. Price, and T. F. Havel, Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing, eprint quant-ph/9709001 (to appear in Physica D); N. Gershenfeld and I. L. Chuang, Bulk spin-resonance quantum computation, Science 275 (1997) 350; I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, Bulk quantum computation with nuclear-magnetic resonance-Theory and experiment. Proc. Roy. Soc. London A 454 (1998) 447.

    Google Scholar 

  3. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Demonstration of a fundamental quantum logic gate, Phys. Rev. Lett. 75 (1995) 4714; Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, Measurement of conditional phase shifts for quantum logic, Phys. Rev. Lett. 75 (1995) 4710. 4. K. Obenland and A. Despain, these proceedings.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Miquel, J. P. Paz, and W. H. Zurek, Quantum computation with phase drift errors, Phys. Rev. Lett. 78 (1997) 3971.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. G. Cory et al., Experimental quantum error correction, eprint quantph/9802018.

    Google Scholar 

  6. I. L. Chuang, L. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd, Experimental realization of a quantum algorithm, Nature 393, 143 (1998).

    Article  Google Scholar 

  7. D. P. DiVincenzo, Quantum computation, Science 270, 255 (1995).

    Article  MathSciNet  Google Scholar 

  8. A. Barenco et al., Elementary gates for quantum computation, Phys. Rev. A 52, 457 (1995).

    Article  Google Scholar 

  9. D. P. DiVincenzo, Phys. Rev. A 51, 1015 (1995); D. Deutsch, A. Barenco, and A. Ekert, Proc. R. Soc. London A 449, 669 (1995); S. Lloyd, Phys. Rev. Lett. 75, 346 (1995).

    Article  Google Scholar 

  10. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Experimental realization of any discrete unitary operator, Phys. Rev. Lett. 73, 58 (1994).

    Article  Google Scholar 

  11. B. Yurke, S. L. McCall, and J. R. Klauder, SU(2) and SU(1,1) interferometers, Phys. Rev. A 33, 4033 (1986); S. Prasad, M. O. Scully, and W. Martienssen, A quantum description of the beam splitter, Opt. Commun. 62, 139 (1987).

    Article  Google Scholar 

  12. I. L. Chuang and Y. Yamamoto, Simple quantum computer, Phys. Rev. A 52, 3489 (1995); Quantum bit regeneration, Phys. Rev. Lett. 76, 4281 (1996).

    Article  Google Scholar 

  13. R. P. Feynman, R. B. Leighton, and M. L. Sands, The Feynman Lectures on Physics Vol. III (Addison-Wesley, Reading, MA, 1965)

    MATH  Google Scholar 

  14. V. Degiorgio, Phase shift between the transmitted and the reflected optical fields of a semireflecting lossless mirror is π/2, Am. J. Phys. 48, 81 (1980); A. Zeilinger, General properties of lossless beam splitters in interferometry, ibid. 49, 882 (1981); Z. Y. Ou and L. Mandel, Derivation of reciprocity relations for a beam splitter from energy balance, ibid. 57, 66 (1989).

    Article  Google Scholar 

  15. N. J. Cerf, C. Adami, and P. G. Kwiat, Optical simulation of quantum logic, Phys. Rev. A 57, R1477 (1998).

    Article  MathSciNet  Google Scholar 

  16. G. J. Milburn, Quantum optical Fredkin gate, Phys. Rev. Lett. 62, 2124 (1989).

    Article  Google Scholar 

  17. M. O. Scully and K. Drühl, Quantum eraser-A proposed photon-correlation experiment concerning observation and delayed choice in quantum mechanics. Phys. Rev. A 25, 2208 (1982); B.-G. Englert, M. O. Scully, and H. Walther, The duality im matter and light, Sci. Am. 271(6), 86 (1994).

    Article  Google Scholar 

  18. G. Brassard, S. L. Braunstein, and R. Cleve, Physica D (1998), to appear.

    Google Scholar 

  19. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  20. S. L. Braunstein, Quantum teleportation without irreversible detection, Phys. Rev. A 53 (1996) 1900.

    Article  Google Scholar 

  21. L. Vaidman, L. Goldenberg, and S. Wiesner, Error prevention scheme with four particles, Phys. Rev. A 54, R1745 (1996); S. L. Braunstein, Quantum error correction of dephasing in 3 qubits, eprint quant-ph/9603024; R. Laflamme, C. Miquel, J. P. Paz, and W.H. Zurek, Perfect quantum error-correcting code, Phys. Rev. Lett. 77, 198 (1996).

    Article  Google Scholar 

  22. J. P. Dowling, Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope, Phys. Rev. A 57, 4736 (1998).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adami, C., Cerf, N.J. (1999). Quantum Computation with Linear Optics. In: Williams, C.P. (eds) Quantum Computing and Quantum Communications. QCQC 1998. Lecture Notes in Computer Science, vol 1509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49208-9_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-49208-9_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65514-5

  • Online ISBN: 978-3-540-49208-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics