Skip to main content

Quantum Computing Using Electron-Nuclear Double Resonances

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1509))

Abstract

We consider the use of Electron-Nuclear Double Resonance (ENDOR) techniques in quantum computing. ENDOR resolution as a possible limiting factor is discussed. It is found that ENDOR and double-ENDOR techniques have sufficient resolution for quantum computing applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. S. P. Hotaling, “The Influence of Transition Metal Dopants on the Properties of Bismuth Metal Oxide (BM)) Sillenites Grown by the Czochralski and Hydrothermal Techniques,„ Ph.D. thesis, Clarkson University, 1995.

    Google Scholar 

  2. S. P. Hotaling, “Photonic Excitations in Bismuth Silicon Oxide,„ in Photonic Device Engineering for Dual Use Applications, Andrew R. Pirich, ed., Proc. SPIE 2481, 240–247, 1995.

    Google Scholar 

  3. S. P. Hotaling, “Photon-Spin Interactions: A Potential Foundation for Photonic Quantum Computing, Proc. SPIE 2487, 1996.

    Google Scholar 

  4. S. P. Hotaling, “Radix R > 2 Quantum Computation,„ Proc. International Quantum Structures Conference, Berlin, Germany, 1996.

    Google Scholar 

  5. S. P. Hotaling and A. R. Pirich, “General Purpose Quantum Computation,„ U. S. patent application, submitted, 1997.

    Google Scholar 

  6. S. P. Hotaling and A. R. Pirich, “Radix R 7 > 2 Quantum Computation,„ U. S. patent application, submitted, 1997.

    Google Scholar 

  7. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a Fundamental Quantum Logic Gate,„ Phys. Rev. Lett. 75, 4714–4717, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuci, and H. J. Kimble, Phys. Rev. Lett. 75, 4710–4713, 1995.

    Article  Google Scholar 

  9. G. Feher, Phys. Rev. 114, 1219–1249, 1959.

    Article  Google Scholar 

  10. N. A. Gershenfeld and I. L. Chuang, “Bulk Spin-Resonance Quantum Computation,„ Science 275, 350–356, 1997.

    Article  MathSciNet  Google Scholar 

  11. D. S. Cory, A. F. Fahmy, and T. F. Havel, “Ensemble Quantum Computing by NMR Spectroscopy,„ Proc. National Academy of Sciences, USA 94, 1634–1639, 1997.

    Article  Google Scholar 

  12. C. P. Slichter, Principles of Magnetic Resonance, (Harper & Row, 1963).

    Google Scholar 

  13. C. P. Poole and H. A. Farach, Handbook of Electron Spin Resonance (AIP Press, 1994).

    Google Scholar 

  14. R. U. Bauer, J. R. Niklas, and J. M. Spaeth, Phys. Status Solidi B 118, 557, 1983.

    Article  Google Scholar 

  15. J. R. Niklas, R. U. Bauer, and J. M. Spaeth, Phys. Status Solidi B 119, 171, 1983.

    Article  Google Scholar 

  16. R. U. Bauer, J. R. Niklas, and J. M. Spaeth, Radiat. Effects 287, 1983.

    Google Scholar 

  17. C. M. Bowden and J. E. Miller, “Superhyperfine Interaction in the Electron-Spin Resonance Spectrum of Substitutional Gd3+ Impurity in CaF2 Single Crystals Under Applied Stress,„ Phys. Rev. Lett. 19, 4, 1967.

    Article  Google Scholar 

  18. D. Mozyrsky, V. Privman, and S. P. Hotaling, “Design of Gates for Quantum Computation: The NOT Gate,„ Quant-ph, 9608029, Los Alamos National Laboratory, E-Print, 1996.

    Google Scholar 

  19. D. Mozyrsky, V. Privman, and S. P. Hotaling, “Design of Gates for Quantum Computation: The Three Spin XOR in Terms of Two-Spin Interactions, Los Alamos National Laboratory, E-Print, Quant-ph 9612029, 1996.

    Google Scholar 

  20. D. Mozyrsky, V. Privman, and S. P. Hotaling, “Extended Quantum XOR Gate in Terms of Two-Spin Interactions,„ Los Alamos National Laboratory, E-Print, Quant-ph 9610008, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bowden, C.M., Dowling, J.P., Hotaling, S.P. (1999). Quantum Computing Using Electron-Nuclear Double Resonances. In: Williams, C.P. (eds) Quantum Computing and Quantum Communications. QCQC 1998. Lecture Notes in Computer Science, vol 1509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49208-9_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-49208-9_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65514-5

  • Online ISBN: 978-3-540-49208-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics