Skip to main content

What Information Theory Can Tell Us About Quantum Reality

  • Conference paper
  • First Online:
Quantum Computing and Quantum Communications (QCQC 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1509))

Abstract

An investigation of Einstein’s “physical“ reality and the concept of quantum reality in terms of information theory suggests a solution to quantum paradoxes such as the Einstein-Podolsky-Rosen (EPR) and the Schrödinger-cat paradoxes. Quantum reality, the picture based on unitarily evolving wavefunctions, is complete, but appears incomplete from the observer’s point of view for fundamental reasons arising from the quantum information theory of measurement. Physical reality, the picture based on classically accessible observables is, in the worst case of EPR experiments, unrelated to the quantum reality it purports to reflect. Thus, quantum information theory implies that only correlations, not the correlata, are physically accessible: the mantra of the Ithaca interpretation of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935).

    Article  MATH  Google Scholar 

  2. N. Bohr, The quantum postulate and the recent development of atomic theory, Nature 121, 580 (1928).

    Article  MATH  Google Scholar 

  3. J.A. Wheeler and W.H. Zurek, eds., Quantum Theory and Measurement (Princeton University Press, 1983).

    Google Scholar 

  4. J.S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  5. W. Schommers, ed., Quantum Theory and Pictures of Reality, (Springer, Berlin, 1989).

    Google Scholar 

  6. P. Busch, P.J. Lahti, and P. MittelstÄdt, The Quantum Theory of Measurement (Springer, New York, 1991).

    Google Scholar 

  7. J.T. Cushing, Quantum Mechanics—Historical Contingencies and the Copenhagen Hegemony, (University of Chicago Press, Chicago, 1994).

    Google Scholar 

  8. D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables, I and II, Phys. Rev. 85, 166 (1952).

    Article  MathSciNet  Google Scholar 

  9. J.S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1, 195 (1965).

    Google Scholar 

  10. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer Verlag, Berlin, 1932).

    MATH  Google Scholar 

  11. E. Schrödinger, Die gegenwÄrtige Situation in der Quantenmechanik, Naturwis-senschaften 23, 807 (1935).

    Google Scholar 

  12. C. Monroe, D. M. Meekhof, B.E. King, and D. J. Wineland, A Schrödinger cat superposition state of an atom, Science 272, 1131 (1996); J. J. Slosser and G.J. Milburn, Creating metastable Schrödinger cat states, Phys. Rev. Lett. 75, 418 (1995).

    Article  MathSciNet  Google Scholar 

  13. C.E. Shannon and W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, 1949).

    Google Scholar 

  14. N. Bohr, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 48, 696 (1935).

    Article  MATH  Google Scholar 

  15. N.J. Cerf and C. Adami, Quantum mechanics of measurement, eprint quantph/9605002, unpublished.

    Google Scholar 

  16. N.J. Cerf and C. Adami, Information theory of quantum entanglement and measurement, Physica D (1998).

    Google Scholar 

  17. N.D. Mermin, What is quantum mechanics trying to tell us?, eprint quant-ph/9801057.

    Google Scholar 

  18. D. Bohm, Quantum Theory, (Prentice-Hall, Englewood Cliffs, 1951), pp. 611–623.

    Google Scholar 

  19. A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50, 221 (1978).

    Article  MathSciNet  Google Scholar 

  20. N.J. Cerf and C. Adami, Negative entropy and information in quantum mechanics, Phys. Rev. Lett. 79 (1997) 5194.

    Article  MATH  MathSciNet  Google Scholar 

  21. N.J. Cerf and C. Adami, Negative entropy in quantum information theory, in New Developments on Fundamental Problems in Quantum Physics, Fundamental Theories of Physics 81, M. Ferrero and A. van der Merwe, eds. (Kluwer Academic Publishers, Dordrecht, 1997) p. 77.

    Google Scholar 

  22. This is the essence of the quantum non-cloning theorem, see W.K. Wootters and W.H. Zurek, A single quantum cannot be cloned, Nature 299, 802 (1982); D. Dieks, Communication by EPR devices, Phys. Lett. 92A, 271 (1982).

    Article  Google Scholar 

  23. D.M. Greenberger, M.A. Horne, and A. Zeilinger, Going beyond Bell’s theorem, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed., (Kluwer, Dordrecht, 1989) p. 69; N.D. Mermin, Quantum mysteries revisited, Am. J. Phys. 58, 731 (1990).

    Google Scholar 

  24. D.P. DiVincenzo, Quantum computation, Science 270, 255 (1995); I.L. Chuang, R. La amme, P.W. Shor, and W.H. Zurek, Quantum computers, factoring, and decoherence, ibid., p. 1633; C.H.Bennett, Quantum information and computation, Phys. Today 48, 24 (October, 1995).

    Article  MathSciNet  Google Scholar 

  25. N.J. Cerf and C. Adami, Entropic Bell inequalities, Phys. Rev. A 55, 3371 (1997).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adami, C., Cerf, N.J. (1999). What Information Theory Can Tell Us About Quantum Reality. In: Williams, C.P. (eds) Quantum Computing and Quantum Communications. QCQC 1998. Lecture Notes in Computer Science, vol 1509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49208-9_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-49208-9_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65514-5

  • Online ISBN: 978-3-540-49208-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics