Mnesia — A Distributed Robust DBMS for Telecommunications Applications

  • Håkan Mattsson
  • Hans Nilsson
  • Claes Wikström
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1551)


The Mnesia DBMS runs in the same adress space as the application owning the data, yet the application cannot destroy the contents of the data base. This provides for both fast accesses and efficient fault tolerance, normally conflicting requirements. The implementation is based on features in the Erlang programming language, in which Mnesia is embedded.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armstrong, J. L., Williams, M. C., Wikström, C. and Virding, S. R., Con current Programming in Erlang, 2:nd ed. Prentice Hall (1995)Google Scholar
  2. 2.
    Bernstein, P.A., Hadzilacos, V., Goodman, N. Concurrency Control and recovery in Database Systems Addison Wesley, 1987.Google Scholar
  3. 3.
    Chen, A.W., Warren, D.S. Query Evaluation under the WellFounded Se mantics Proc. ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Sys. Whashington, 1993.Google Scholar
  4. 4.
    Case, K. McCloghrie, M. Rose, S. Waldbusser. Management Information Base for Version 2 of the Simple Network Management Protocol (SNMPv2), Jan, 1996.Google Scholar
  5. 5.
    Copeland, G., Maier, D. Making Smalltalk a database system Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data. pp. 316–325. Boston 1984.Google Scholar
  6. 6.
    Eswaran, K.P., Grey, J.N., Lorie, R.A. and Traiger, I.L. The Notions of Consistence and Predicate Locks in a Database system Communications of ACM, 19(11):624–633, November 1976.Google Scholar
  7. 7.
    Faehndrich, M., Morrisett, G., Nettles, S., Wing, J. Extensions to Standard ML to Support Transactions ACM SIGPLAN Workshop on ML and its Applications, June 2021, 1992.Google Scholar
  8. 8.
    Goetz, G. Query Evaluation Techniques for Large Databases ACMCS 2(25):73170, June 1993.Google Scholar
  9. 9.
    Grey, J.N. Notes on Database operating system: An advanced course Lecture notes in Computer Science, Springer Verlag, Berlin. 1(60):393481, 1978.Google Scholar
  10. 10.
    Grey, J.N., Lorie, R.A., Putzolo, G.R. and Traiger, I.L. Granularity of Locks and degrees of consistency in a shared database IBM, Research report RJ1654, September 1975.Google Scholar
  11. 11.
    Hvasshovd, SO., Torbjornsen, O., Bratsberg, S.E., Holager, P. The ClustRa telecom database: High availability, high throughput, and realtime response Proceedings of the 21st International Conference on Very Large Databases, Zurich, Switzerland, pp. 469477, September 1995.Google Scholar
  12. 12.
    Lamport, L. Time, clocks and the ordering of events i a distributed system ACM Transactions on Programming Languages and Systems, 21(1):558565, July 1878.Google Scholar
  13. 13.
    Larsson, PÅ Larsson. Dynamic Hash tables Communications of the ACM, 31(4), 1988Google Scholar
  14. 14.
    Rosenkrantz, D.J., Stearns, R.E. and Lewis, P.M. System Level Concurrency Control for Distributed Databases ACM Transactions on Database Systems, 3(2):178198, June 1978.Google Scholar
  15. 15.
    Trinder, P.W. and Wadler, P. List comprehensions and the Relational Cal culus Proceedings of the Glasgow 1988 Workshop on functional programming, Rothesay, August 1988, pp 115123.Google Scholar
  16. 16.
    Ullman, J. Principles of Database and KnowledgeBase Systems, vol 2. Computer Science press, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Håkan Mattsson
    • 1
  • Hans Nilsson
    • 1
  • Claes Wikström
    • 1
  1. 1.Computer Science LaboratoryEricsson Telecom ABStockholmSweden

Personalised recommendations