Skip to main content

Fast Computations of the Exponential Function

  • Conference paper
  • First Online:
STACS 99 (STACS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1563))

Included in the following conference series:

Abstract

In this paper we present an algorithm which shows that the exponential function has algebraic complexity O(log2 n), i.e., can be evaluated with relative error O(2-n) using O(log2 n) infinite-precision additions, subtractions, multiplications and divisions. This solves a question of J. M. Borwein and P. B. Borwein [9].

The best known lower bound for the algebraic complexity of the exponential function is Ω(log n).

The best known upper and lower bounds for the bit complexity of the exponential function are O(μ(n) log n) [10] and Ω(ν(n)) [4], respectively, where μ(n) denotes an upper bound and ν(n) denotes a lower bound for the bit complexity of n-bit integer multiplication.

The presented algorithm has bit complexity O(μ(n) log n).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrendt, T. Fast high-precision computation of complex square roots. In Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation: ISSAC’ 96, Lakshman, Y. N., Ed., ACM, New York, pp. 142–149.

    Google Scholar 

  2. Alt, H. Square rooting is as difficult as multiplication. Computing 21 (1979), 221–232.

    Article  MATH  MathSciNet  Google Scholar 

  3. Alt, H. Comparison of arithmetic functions with respect to Boolean circuit depth. In Proc. 16th Ann. ACM Symposium on Theory of Computing (1984), pp. 466–470.

    Google Scholar 

  4. Alt, H. Multiplication is the easiest nontrivial arithmetic function. Theoretical Comput. Sci. 36 (1985), 333–339.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bailey, D. H. A portable high performance multiprecision package. RNR Technical Report RNR-90-022, NAS Applied Research Branch, NASA Ames Research Center, Moffett Filed, CA 94035, May 1993.

    Google Scholar 

  6. Blum, L., Cucker, F., Shub, M., AND Smale, S.Complexity and Real Computation. Springer, New York, 1997.

    MATH  Google Scholar 

  7. Borwein, J. M., AND Borwein, P. B. The arithmetic-geometric mean and fast computation of elementary funtions. SIAM Review 26,3 (1984), 351–366.

    Article  MATH  MathSciNet  Google Scholar 

  8. Borwein, J. M., AND Borwein, P. B.Pi and the AGM. John Wiley and Sons, New York, 1987.

    MATH  Google Scholar 

  9. Borwein, J. M., AND Borwein, P. B. On the complexity of familiar functions and numbers. SIAM Review 30,4 (1988), 589–601.

    Article  MATH  MathSciNet  Google Scholar 

  10. Brent, R. P. Fast multiple-precision evaluation of elementary functions. J. ACM 23,2 (1976), 242–251.

    Article  MATH  MathSciNet  Google Scholar 

  11. Brent, R. P. Multiple-precision zero-finding methods and the complexity of elementary function evaluation. In Analytic Computational Complexity, Traub, J. F., Ed. Academic Press, New York, 1976, pp. 151–176.

    Google Scholar 

  12. Kanada, Y. Vectorization of multiple-precision arithmetic program and 201,326,000 decimal digits of π calculation. Supercomputing 88: Volume II, Science and Applications (1988), 117–128. In Pi: A Source Book, Berggren, L., Borwein, J. M., AND Borwein, P. B., Eds. Springer, New York, 1997.

    Google Scholar 

  13. Muller, J.-M.Elementary Functions: Algorithms and Implementation. Birkhäuser, Boston, 1997.

    MATH  Google Scholar 

  14. Okabe, Y., Takagi, N., AND Yajima, S. Log-depth circuits for elementary functions using residue number system. Electronics and Communications in Japan, Part 3 74,8 (1991), 31–38.

    Article  Google Scholar 

  15. Reif, J. Logarithmic depth circuits for algebraic functions. In Proc. 24th Ann. IEEE Symposium on Foundations of Computer Science (1983), pp. 138–145.

    Google Scholar 

  16. Asaki, T., AND Kanada, Y. Practically fast multiple-precision evaluation of log(x). Journal of Information Processing 4,4 (1982), 247–250.

    Google Scholar 

  17. Chonhage, A. Routines for square roots. Program documentation of the TP-routines SQRT, ISQRT, CSQRT, unpublished manuscript, July 1991.

    Google Scholar 

  18. Chonhage, A., Grotefeld, A. F. W., AND Vetter, E.Fast Algorithms: a Multitape Turing Machine Implementation. Bibliographisches Institut, Mannheim, 1994.

    Google Scholar 

  19. Schonhage, A., AND Strassen, V. Schnelle Multiplikation großer Zahlen. Computing 7 (1971), 281–292.

    Article  MathSciNet  Google Scholar 

  20. Wegener, I.Effiziente Algorithmen für grundlegende Funktionen. Teubner, Stuttgart, 1989.

    MATH  Google Scholar 

  21. Wolfram, S.Mathematica: A System for Doing Mathematics by Computer, 2nd ed. Addison-Wesley, Redwood City, California, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahrendt, T. (1999). Fast Computations of the Exponential Function. In: Meinel, C., Tison, S. (eds) STACS 99. STACS 1999. Lecture Notes in Computer Science, vol 1563. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49116-3_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-49116-3_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65691-3

  • Online ISBN: 978-3-540-49116-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics