Skip to main content

The Reduced Genus of a Multigraph

  • Conference paper
  • First Online:
  • 1584 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1563))

Abstract

We define here the reduced genus of a multigraph as the minimum genus of a hypergraph having the same adjacencies with the same multiplicities. Through a study of embedded hypergraphs, we obtain new bounds on the coloring number, clique number and point arboricity of simple graphs of a given reduced genus. We present some new related problems on graph coloring and graph representation.

This work was partially supported by the Esprit LTR Project no 20244-ALCOM IT

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Appel and W. Haken. Every planar map is four colorable. part I. discharging. Illinois J. Math., 21:429–490, 1977.

    MATH  MathSciNet  Google Scholar 

  2. K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. part II. reducibility. Illinois J. Math., 21:491–567, 1977.

    MATH  MathSciNet  Google Scholar 

  3. C. Berge. Graphes et hypergraphes. Dunod, Paris, second edition, 1973.

    Google Scholar 

  4. G. Chartrand and H.V. Kronk. The point arboricity of planar graphs. J. Lond. Math. Soc., 44:612–616, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Cori. Un code pour les graphes planaires et ses applications, volume 27. Société mathématique de france, Paris, 1975.

    Google Scholar 

  6. H. de Fraysseix and P. Ossona de Mendez. Intersection graphs of Jordan arcs. In Stirin 1997 Proc. DIMATIA-DIMACS. (accepted).

    Google Scholar 

  7. H. de Fraysseix and P. Ossona de Mendez. Stretchability of Jordan arc contact systems. Technical Report 98-387, KAM-DIMATIA Series, 1998.

    Google Scholar 

  8. H. de Fraysseix, P. Ossona de Mendez, and J. Pach. Representation of planar graphs by segments. Intuitive Geometry, 63:109–117, 1991.

    Google Scholar 

  9. H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. On triangle contact graphs. Combinatorics, Probability and Computing, 3:233–246, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Descartes. Solution to advanced problem no. 4256. Am. Math. Mon., 61:352, 1954.

    Article  MathSciNet  Google Scholar 

  11. P. Erdös, A.L. Rubin, and H. Taylor. Choosability in graphs. In Proc. West-Coast Conference on Combinatorics, Graph Theory and Computing, volume XXVI, pages 125–157, Arcata, California, 1979.

    Google Scholar 

  12. I. Fáry. On straight line representation of planar graphs. Acta Scientiarum Mathematicarum Szeged), 11:229–233, 1948.

    Google Scholar 

  13. H. Grötzsch. Ein Dreifarbensatz für dreikreisfrei Netze auf der Kugel. Wissenchaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg. Mathematisch-Naturwissenschaftliche Reihe, 8:109–120, 1958/1959.

    Google Scholar 

  14. P.J. Heawood. Map color theorem. Q.J. Pure Appl. Math., 24:332–338, 1890.

    Google Scholar 

  15. H. Heesch. Untersuchungen zum Vierfarbenproblem. Hochschulskriptum 8 10/a/b, Bibliographisches Institut, Mannheim, 1969.

    Google Scholar 

  16. D.S. Johnson and H.O. Pollak. Hypergraph planarity and the complexity of drawing Venn diagrams. Journal of Graph Theory, 11(3):309–325, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  17. R.P. Jones. Colourings of Hypergraphs. PhD thesis, Royal Holloway College, Egham, 1976.

    Google Scholar 

  18. J.B. Kelly and L.M. Kelly. Paths and circuits in critical graphs. Am. J. Math., 76:786–792, 1954.

    Article  MATH  Google Scholar 

  19. L. Lovasz. On chromatic numbers of finite set systems. Acta Math. Acad. Sci. Hung., 19:59–67, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  20. B. Mohar and P. Rosenstiehl. A flow approach to upward drawings of toroidal maps. In proc. of Graph Drawing’ 94, pages 33–39, 1995.

    Google Scholar 

  21. J. Mycielski. Sur le coloriage des graphes. Colloq. Math., 3:161–162, 1955.

    MATH  MathSciNet  Google Scholar 

  22. G. Ringel and J.W.T. Youngs. Solution of the Heawood map coloring problem. volume 60 of Proc. Nat. Acad. Sci., pages 438–445, 1968.

    Google Scholar 

  23. N. Robertson, D.P. Sanders, P.D. Seymour, and R. Thomas. A new proof of the four color theorem. Electron. Res. Announc. Amer. Math. Soc., 2:17–25, 1996. (electronic).

    Article  MathSciNet  Google Scholar 

  24. N. Robertson, D.P. Sanders, P.D. Seymour, and R. Thomas. The four color theorem. J. Comb Theory, B(70):2–44, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  25. P. Rosenstiehl and R.E. Tarjan. Rectilinear planar layout and bipolar orientation of planar graphs. Discrete and Computational Geometry, 1:343–353, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  26. S.K. Stein. Convex maps. In Proc. Amer. Math. Soc., volume 2, pages 464–466, 1951.

    Article  MATH  MathSciNet  Google Scholar 

  27. E. Steinitz and H. Rademacher. Vorlesung über die Theorie der Polyeder. Springer, Berlin, 1934.

    Google Scholar 

  28. G. Szekeres and H.S. Wilf. An inequality for the chromatic number of a graph. J. Comb. Theory, 4:1–3, 1968.

    Article  MathSciNet  Google Scholar 

  29. C. Thomassen. Every planar graph is 5-choosable. Journal of Combinatorial Theory, B(62):180–181, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  30. V.G. Vizing. Coloring the vertices of a graph in prescribed colors. Mtody Diskret. Anal. v Teorii Kodov i Schem, 29:3–10, 1976. (In russian).

    MATH  MathSciNet  Google Scholar 

  31. M. Voigt. A not 3-choosable planar graph without 3-cycles. Discrete Math., 146:325–328, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Voigt and B. Wirth. On 3-colorable non 4-choosable planar graphs. Journal of Graph Theory, 24:233–235, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  33. K. Wagner. Bemerkungen zum Vierfarbenproblem. Jber. Deutsch. Math. Verein, 46:26–32, 1936.

    Google Scholar 

  34. T.R.S. Walsh. Hypermaps versus bipartite maps. J. Combinatorial Theory, 18(B):155–163, 1975.

    MATH  Google Scholar 

  35. A.T. White. Graphs, Groups and Surfaces, volume 8 of Mathematics Studies, chapter 13, pages 205–210. North-Holland, Amsterdam, revised edition, 1984.

    MATH  Google Scholar 

  36. A.A. Zykov. Hypergraphs. Uspeki Mat. Nauk, 6:89–154, 1974.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Mendez, P.O. (1999). The Reduced Genus of a Multigraph. In: Meinel, C., Tison, S. (eds) STACS 99. STACS 1999. Lecture Notes in Computer Science, vol 1563. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49116-3_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-49116-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65691-3

  • Online ISBN: 978-3-540-49116-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics