Skip to main content

Catalysis Based on Nucleic Acid Structures

  • Chapter
  • First Online:
Book cover Implementation and Redesign of Catalytic Function in Biopolymers

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 202))

Abstract

Since the discovery that RNA molecules can possess catalytic activities, ribozymes have become a fascinating field both for academic researchers and the pharmaceutical industry. In this review, we emphasize the latest progress made in structure determination of ribozymes as well as the generation of DNA and RNA enzymes with novel catalytic properties by combinatorial approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kruger Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Cell 31:147–157

    Article  Google Scholar 

  2. Gurrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) Cell 35:849–857

    Article  Google Scholar 

  3. Schimmel P, Alexander R (1998) Science 28:658–659

    Article  Google Scholar 

  4. Piccirilli JA, McConnell TS, Zaug AJ, Noller HF, Cech TR (1992) Science 256:1420–1424

    Article  CAS  Google Scholar 

  5. Dai X, De Mesmaeker A, Joyce GF (1995) Science 267:237–240

    Article  CAS  Google Scholar 

  6. Tarasow TM, Tarasow SL, Eaton BE (1997) Nature 389:54–57

    Article  CAS  Google Scholar 

  7. Prudent JR, Uno T, Schultz PG (1994) Science 264:1924–1927

    Article  CAS  Google Scholar 

  8. Birikh KR, Heaton PA, Eckstein F (1997) Eur J Biochem 245:1–16

    Article  CAS  Google Scholar 

  9. Good PD, Krikos AJ, Li SX, Bertrand E, Lee NS, Giver L, Ellington A, Zaia JA, Rossi JJ, Engelke DR (1997) Gene Ther 4:45–54

    Article  CAS  Google Scholar 

  10. Christoffersen RE (1997) Nature Biotechnol 15:483–484

    Article  CAS  Google Scholar 

  11. Burke JM (1997) Nature Biotechnology 15:414–415

    Article  CAS  Google Scholar 

  12. Bramlage B, Luzi E, Eckstein F (1998) Trends Biotechnol 16:434–438

    Article  CAS  Google Scholar 

  13. Lan N, Howrey RP, Lee S-W, Smith CA, Sullenger BA (1998) Science 280-:1593–1596

    Article  CAS  Google Scholar 

  14. Weatherall DJ (1998) Curr Biol 8: R696–R698

    Article  CAS  Google Scholar 

  15. Tang J, Breaker RR (1997) Chem Biol 4:453–459

    Article  CAS  Google Scholar 

  16. Tang J, Breaker RR (1997) RNA 3:914–925

    CAS  Google Scholar 

  17. Araki M, Okuno Y, Hara Y, Sugiura Y (1998) Nucleic Acids Res 26:3379–3384

    Article  CAS  Google Scholar 

  18. Robertson MP, Ellington AD (1999) Nature Biotechnol 17:62–66

    Article  CAS  Google Scholar 

  19. Cech TR, Zaug AJ, Grabowski PJ (1981) Cell 27:487–496

    Article  CAS  Google Scholar 

  20. Jacquier A (1996) Biochimie 78:474–487

    Article  CAS  Google Scholar 

  21. Pyle AM (1996) Catalytic reaction mechanisms and structural features of group II intron ribozymes, p 75–107. In: Eckstein F, Lilley DMJ (ed) Catalytic RNA, vol 10 Springer, Berlin Heidelberg New York

    Google Scholar 

  22. Thomson JB, Tuschl T, Eckstein F (1996). The Hammerhead ribozyme, p 173–196. In: Eckstein F, Lilley DMJ (ed) Catalytic RNA, vol 10. Springer, Berlin Heidelberg New York

    Google Scholar 

  23. Been MD (1994) Trends Biochem Sci 19:251–256

    Article  CAS  Google Scholar 

  24. Burke JM (1994) The hairpin ribozyme, p 105–118. In: Eckstein F, Lilley DMJ (ed), Nucleic Acids Mol Biol, vol 8

    Google Scholar 

  25. Burke JM, Butcher SE, Sargueil B (1996). Structural analysis and modifications of the hairpin ribozyme, p 129–144. In: Eckstein F, Lilley DMJ (ed) Catalytic RNA, vol. 10. Springer, Berlin Heidelberg New York

    Google Scholar 

  26. Nolan JM, Pace NR (1996) Structural analysis of bacterial ribonuclease P RNA, p 109–128. In: Eckstein F, Lilley DMJ (ed) Catalytic RNA, vol. 10. Springer, Berlin Heidelberg New York

    Google Scholar 

  27. Saville BJ, Collins RA (1990) Cell 61:685–696

    Article  CAS  Google Scholar 

  28. Eckstein F, Lilley DMJ (ed.) (1996) Catalytic RNA, vol 10 Springer, Verlag Berlin

    Google Scholar 

  29. Uhlenbeck OC, Pardi A, Feigon J (1997) Cell 90:833–840

    Article  CAS  Google Scholar 

  30. Kim S-H, Quigley GJ, Suddath FL, McPherson A, Sneden D, Kim JJ, Weinzierl J, Rich A (1973) Science 179:285–288

    Article  CAS  Google Scholar 

  31. Pley HW, Flaherty KM, McKay DB (1994) Nature 372:68–74

    Article  CAS  Google Scholar 

  32. Scott WG, Finch JT, Klug A (1995) Cell 81:991–1002

    Article  CAS  Google Scholar 

  33. Scott WG, Murray JB, Arnold JRP, Stoddard BL, Klug A (1996) Science 274:2065–2069

    Article  CAS  Google Scholar 

  34. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR, Doudna JA (1996) Science 273:1678–1685

    Article  CAS  Google Scholar 

  35. Cate JH, Hanna RL, Doudna JA (1997) Nature Struct Biol 4:553–558

    Article  CAS  Google Scholar 

  36. Cate JH, Doudna JA (1996) Structure 4:1221–1229

    Article  CAS  Google Scholar 

  37. Ferre-D’ Amare AR, Zhou K, Doudna JA (1998) Nature 395:567–574

    Article  CAS  Google Scholar 

  38. Brion P, Westhof E (1997) Annu Rev Biophys Biomol Struct 26:113–137

    Article  CAS  Google Scholar 

  39. Michel F, Westhof E (1996) Science 273:1676–1677

    Article  CAS  Google Scholar 

  40. Westhof E, Masquida B, Jaeger L (1996) Folding & Design 1: R78–R88

    Article  CAS  Google Scholar 

  41. Tuschl T, Gohlke C, Jovin T, Westhof E, Eckstein F (1994) Science 266:785–789

    Article  CAS  Google Scholar 

  42. Sczakiel G (1995) Angew Chem 107:701–704

    Article  Google Scholar 

  43. Scott WG, Klug A (1996) Trends Biochem Sci 21:220–224

    CAS  Google Scholar 

  44. Chartrand P, Leclerc F, Cedergren R (1997) RNA 3:692–696

    CAS  Google Scholar 

  45. Hermann T, Auffinger P, Scott WG, Westhof E (1997) Nucleic Acids Res 25:3421–3427

    Article  CAS  Google Scholar 

  46. Zhou d-M, Usman N, Wincott FE, Matulic-adamic J, Orita M, Zhang L, Komiyama M, Kumar PKR, Taira K (1996) J Am Chem Soc 118:5862–5866

    Article  CAS  Google Scholar 

  47. Jaeger L, Michel F, Westhof E (1996) The structure of group I ribozymes, p 33–51. In: Eckstein F, Lilley DMJ (ed), Nucleic Acids and Molecular Biology, vol 10. Springer, Berlin Heidelberg New York

    Google Scholar 

  48. Abramovitz DL, Pyle AM (1997) J Mol Biol 266:493–506

    Article  CAS  Google Scholar 

  49. Costa M, Deme E, Jacquier A, Michel F (1997) J Mol Biol 267:520–536

    Article  CAS  Google Scholar 

  50. Jestin JL, Deme E, Jacquier A (1997) EMBOJ 16:2945–2954

    Article  CAS  Google Scholar 

  51. Tinoco IJ (1996) Curr Biol 6:1374–1376

    Article  CAS  Google Scholar 

  52. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Szewczak AA, Kundrot CE, Cech TR, Doudna JA (1996) Science 273:16961699

    Google Scholar 

  53. Sharp PA (1987) Science 235:766–771

    Article  CAS  Google Scholar 

  54. Pleij CWA (1990) Trends Biochem Sci 15:143–147

    Article  CAS  Google Scholar 

  55. Rosenstein SP, Been MD (1996) Biochemistry 35:11403–11413

    Article  CAS  Google Scholar 

  56. Hampel A, Cowan JA(1997) ChemBiol 4:513–517

    CAS  Google Scholar 

  57. Nesbitt S, Hegg L, Fedor MJ (1997) Chem Biol 4:619–630

    Article  CAS  Google Scholar 

  58. Young KJ, Gill F,G rasby JA (1997) Nucleic Acids Res 25:3760–3766

    Article  CAS  Google Scholar 

  59. Faulhammer D, Famulok M (1997) J Mol Biol 274:188–201

    Article  Google Scholar 

  60. Geyer CR, Sen D (1997) Chem Biol 4:579–594

    Article  CAS  Google Scholar 

  61. Noller HF, Hoffarth V, Zimniak L (1992) Science 256:1420–1424

    Article  Google Scholar 

  62. Noller HF (1993) J Bacteriol 175:5297–5300

    CAS  Google Scholar 

  63. Nitta I, Ueda T,W atanabe K (1998) RNA 4:257–267

    CAS  Google Scholar 

  64. Nitta I, Kamada Y, Noda H, Ueda T, Watanabe K (1998) Science 281:666–669

    Article  CAS  Google Scholar 

  65. Zhang B, Cech TR (1997) Nature 390:96–100

    Article  CAS  Google Scholar 

  66. Zhang B, Cech TR (1998) Chem Biol 5:539–553

    Article  CAS  Google Scholar 

  67. Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Annu Rev Biochem 64:763–797

    Article  CAS  Google Scholar 

  68. Joyce GF (1996) Curr Biol 6:965–967

    Article  CAS  Google Scholar 

  69. Breaker RR (1997) Chem Rev 97:371–390

    Article  CAS  Google Scholar 

  70. Breaker RR (1997) Nature Biotechnol 15:427–431

    Article  CAS  Google Scholar 

  71. Breaker RR (1997) Curr Opin Chem Biol 1:26–31

    Article  CAS  Google Scholar 

  72. Jaeger L (1997) Curr Opin Struct Biol 7:324–335

    Article  CAS  Google Scholar 

  73. Narlikar GJ, Herschlag D (1997) Annu Rev Biochem 66:19–59

    Article  CAS  Google Scholar 

  74. Pan T (1997) Curr Opin Chem Biol 1:17–25

    Article  CAS  Google Scholar 

  75. Famulok M, Jenne A (1998) Curr Opin Chem Biol 2:320–327

    Article  CAS  Google Scholar 

  76. Lohse PA, Szostak JW (1996) Nature 381:442–446

    Article  CAS  Google Scholar 

  77. Wiegand TW, Janssen RC, Eaton BE (1997) Chem Biol 4:675–683

    Article  CAS  Google Scholar 

  78. Bartel DP, Szostak JW (1993) Science 261:1411–1418

    Article  CAS  Google Scholar 

  79. Chapman KB, Szostak JW (1995) Chem Biol 2:325–333

    Article  CAS  Google Scholar 

  80. Cuenoud B, Szostak JW (1995) Nature 375:611–614

    Article  CAS  Google Scholar 

  81. Ekland EH, Szostak JW, Bartel DP (1995) Science 269:364–370

    Article  CAS  Google Scholar 

  82. Hager AJ, Szostak JW (1997) Chem Biol 4:607–617

    Article  CAS  Google Scholar 

  83. Wright MC, Joyce GF (1997) Science 276:614–617

    Article  CAS  Google Scholar 

  84. Huang F, Yarus M (1997) Biochemistry 36:6557–6563

    Article  CAS  Google Scholar 

  85. Huang F, Yarus M (1997) Proc Natl Acad Sci USA 94:8965–8969

    Article  CAS  Google Scholar 

  86. Jenne A, Famulok M (1998) Chem Biol 5:23–34

    Article  CAS  Google Scholar 

  87. Unrau PJ, Bartel DP (1998) Nature 395:260–263

    Article  CAS  Google Scholar 

  88. Haldane JBS (1930) Enzymes Longmans, Green & Co., MIT Press

    Google Scholar 

  89. Pauling L (1946) Chem Eng News 24:1375

    CAS  Google Scholar 

  90. Jencks WP (1969) Catalysis in Chemistry and Enzymology McGraw Hill, New York

    Google Scholar 

  91. Tramontano A, Janda KD, Lerner RA (1986) Science 234:1566–1570; Jacobs J, Schultz PG (1987) J Am Chem Soc 109:2174-2176; Schultz PG (1989) Angew. Chem. Int. Ed. 28: 1283-1295; Schultz PG, Lerner RA (1993) Acc Chem Res 26:391-395; Hilvert D (1994) Curr. Opin. Struct. Biol. 4: 612-617; Posner B, Smiley J, Lee I, Benkovic S (1994) Trends Biochem Sci 19:145-150; Jacobsen JR, Schultz PG (1995) Curr Opin Struct Biol 5: 818-824; Hsieh-Wilson LC, Xiang X-D, Schultz PG (1996) Acc Chem Res 29:164-170; Benkovic S (1996) Nature 383:23-24

    Article  CAS  Google Scholar 

  92. Conn MM, Prudent JR, Schultz PG (1996) J Am Chem Soc 118:7012–7013

    Article  CAS  Google Scholar 

  93. Li Y, Sen D (1996) Nature Struct Biol 3:743–747

    Article  CAS  Google Scholar 

  94. Morris KN, Tarasow TM, Julin CM, Simons SL, Hilvert D, Gold L (1994) Proc Natl Acad Sci USA91:13028–13032

    Article  CAS  Google Scholar 

  95. Prudent JR, Schultz PG (1996) RNA catalysis and transition state stabilization, p 383–395. In: Eckstein F, Lilley DMJ (ed) Catalytic RNA, vol 10. Springer, Berlin Heidelberg New York

    Google Scholar 

  96. Li WX, Kaplan AV, Grant GW, Toole JJ, Leung LL (1994) Blood 83:677–682

    CAS  Google Scholar 

  97. Li Y, Geyer CR, Sen D (1996) Biochemistry 35:6911–6922

    Article  CAS  Google Scholar 

  98. Li Y, Sen D (1997) Biochemistry 36:5589–5599

    Article  CAS  Google Scholar 

  99. Li Y, Sen D (1998) Chem Biol 5:1–12

    Article  Google Scholar 

  100. Wilson C, Szostak JW (1998) Chem Biol 5:609–617

    Article  CAS  Google Scholar 

  101. Lehman N, Joyce GF (1993) Nature 361:182–185

    Article  CAS  Google Scholar 

  102. Lorsch JR, Szostak JW (1994) Nature 371:31–36

    Article  CAS  Google Scholar 

  103. Wilson C, Szostak JW (1995) Nature 374:777–782

    Article  CAS  Google Scholar 

  104. Williams KP, Ciafré S, Tocchini-Valentini GP (1995) EMBO J 14:4551–4557

    CAS  Google Scholar 

  105. Lorsch J, Szostak JW (1995) Biochemistry 34:15315–15327

    Article  CAS  Google Scholar 

  106. Illangasekare M, Sanchez G, Nickles T, Yarus M (1995) Science 267:643–647

    Article  CAS  Google Scholar 

  107. Wecker M, Smith D, Gold L (1996) RNA 2:982–994

    CAS  Google Scholar 

  108. Frauendorf Jäschke A (1988) Angew Chem Int Ed 37:378–381

    Google Scholar 

  109. Beaudry AA, Joyce GF (1992) Science 257:635–641

    Article  CAS  Google Scholar 

  110. Pan T, Uhlenbeck OC (1992) Biochemistry 31:3887–3895

    Article  CAS  Google Scholar 

  111. Breaker RR, Joyce GF (1994) Chem Biol 1:223–229

    Article  CAS  Google Scholar 

  112. Breaker RR, Joyce GF (1995) Chem Biol 2:655–660

    Article  CAS  Google Scholar 

  113. Roth A, Breaker RR (1998) Proc Natl Acad Sci USA 95:6027–6031

    Article  CAS  Google Scholar 

  114. Faulhammer D, Famulok M (1996) Angew Chem Int Ed 35:2837–2841

    Article  CAS  Google Scholar 

  115. Jayasena VK, Gold L (1997) Proc Natl Acad Sci USA 94:10612–10617

    Article  CAS  Google Scholar 

  116. Santoro SW, Joyce GF (1997) Proc Natl Acad Sci USA 94:4262–4266

    Article  CAS  Google Scholar 

  117. Carmi N, Shultz LA, Breaker RR (1996) Chem Biol 3:1039–1046

    Article  CAS  Google Scholar 

  118. Carmi N, Balkhi SR, Breaker RR (1998) Proc Natl Acad Sci USA 95:2233–2237

    Article  CAS  Google Scholar 

  119. Ekland EH, Bartel DP (1996) Nature 382:373–376

    Article  CAS  Google Scholar 

  120. Huang F,Y arus M (1997) Biochemistry 36:14107–14119

    Article  CAS  Google Scholar 

  121. Huang F, Yang Z, Yarus M (1998) Chem Biol 5:669–678

    Article  CAS  Google Scholar 

  122. Burmeister J, von Kiedrowski G, Ellington AD (1997) Angew Chem Int Ed 36:1321–1324

    Article  CAS  Google Scholar 

  123. Illangasekare M, Yarus M (1997) J Mol Biol 268:631–639

    Article  CAS  Google Scholar 

  124. Suga H, Szostak JW (1998) J Am Chem Soc 120:1151–1156

    Article  CAS  Google Scholar 

  125. Ekland EH, Bartel DP (1995) Nucleic Acids Res 23:3231–3238

    Article  CAS  Google Scholar 

  126. Spiegelman S (1967) Am Sci 55:221–264

    CAS  Google Scholar 

  127. Hager AJ, Pollard JD, Szostak JW(1996) Chem Biol 3:717–725

    Article  CAS  Google Scholar 

  128. Connell GJ, Illangesekare M, Yarus M (1993) Biochemistry 32:5497–5502

    Article  CAS  Google Scholar 

  129. Famulok M (1994) J Am Chem Soc 116:1698–1706

    Article  CAS  Google Scholar 

  130. Majerfeld I, Yarus M (1994) Nat Struct Biol 1:287–292

    Article  CAS  Google Scholar 

  131. Yang Y, Kochoyan M, Burgstaller P, Westhof E, Famulok M (1996) Science 272:1343–1347

    Article  CAS  Google Scholar 

  132. Majerfeld I, Yarus M (1998) RNA 4:471–478

    CAS  Google Scholar 

  133. Illangasekare M, Yarus M (1997) J Mol Biol 274:519–529

    Article  CAS  Google Scholar 

  134. Eaton BE (1997) Curr Opin Chem Biol 1:10–16

    Article  CAS  Google Scholar 

  135. Service RF (1998) Science 282:1020–1021

    Article  CAS  Google Scholar 

  136. Sakthivel Barbas III CF (1998) Angew Chem Int Ed 37:2872–2875

    Article  CAS  Google Scholar 

  137. Otto S, Bertoncin F, Engberts JBFN (1996) J Am Chem Soc 118:7702–7707

    Article  CAS  Google Scholar 

  138. Igloi GL (1988) Biochemistry 27:3842–3849

    Article  CAS  Google Scholar 

  139. Sassanfar M, Szostak JW (1993) Nature 364:550–553

    Article  CAS  Google Scholar 

  140. Jiang F, Kumar RA, Jones RA, Patel DJ (1996) Nature 382:183–186

    Article  CAS  Google Scholar 

  141. Ellington AD, Szostak JW (1992) Nature 355:850–852

    Article  CAS  Google Scholar 

  142. Burgstaller P, Famulok M (1995) Angew Chem Int Ed 34:1189–1192

    Article  CAS  Google Scholar 

  143. Burgstaller P, Famulok M (1998) Synthetic ribozymes and deoxyribozymes, in press. In: Waldmann H, Mulzer J (ed) Organic Synthesis Highlights, vol 3. Wiley-VCH, Weinheim

    Google Scholar 

  144. Michel F, Hanna M, Green R, Bartel DP, Szostak JW (1989) Nature 342:391–395

    Article  CAS  Google Scholar 

  145. Joyce GF (1998) Proc Natl Acad Sci USA 95:5845–5847

    Article  CAS  Google Scholar 

  146. Patel DJ (1997) Curr Opin Chem Biol 1:32–46

    Article  CAS  Google Scholar 

  147. Patel DJ, Suri AK, Jiang F, Liang L, Fan P, Kumar RA, Nonin S (1997) J Mol Biol 272: 645–664

    Article  CAS  Google Scholar 

  148. Burgstaller P, Famulok M (1994) Angew Chem Int Ed 33:1084–1087

    Article  Google Scholar 

  149. Burgstaller P, Famulok M (1996) Bioorg Med Chem Lett 6:1157–1162

    Article  CAS  Google Scholar 

  150. Fan P, Suri AK, Fiala R, Live D, Patel DJ (1996) J Mol Biol 258:480–500

    Article  CAS  Google Scholar 

  151. Tang J, Breaker RR (1998) Nucleic Acids Res 26:4214–4221

    Article  CAS  Google Scholar 

  152. Joyce GF, Orgel LE (1993) Prospects for the understanding of the RNA world, p 1–25. In: Gesteland RF, Atkins JF (ed) The RNA World. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Famulok, M., Jenne, A. (1999). Catalysis Based on Nucleic Acid Structures. In: Schmidtchen, F.P., et al. Implementation and Redesign of Catalytic Function in Biopolymers. Topics in Current Chemistry, vol 202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48990-8_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-48990-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65728-6

  • Online ISBN: 978-3-540-48990-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics