Skip to main content

Electron Correlation in Small Molecules: Grafting CI onto CC

  • Chapter
  • First Online:
Book cover Correlation and Localization

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 203))

Abstract

Among the post-Hartree-Fock methods, those based on the coupled cluster (CC) ansatz for the electronic wave function proved to be extremely valuable in quantum chemical computations of the molecular electronic structure, being capable of attaining chemical accuracy for many molecular properties of interest. While the widely exploited single reference (SR) singles and doubles CC method (CCSD) is remarkably efficient in handling dynamic correlation, a proper account of nondynamic correlation, which becomes essential in the presence of the quasidegeneracy, requires multireference (MR) formalism. In view of the complexity and computational demands of the available MR CC methods, it is highly desirable to design SR CCSD-type approaches that are capable of accommodating both types of correlation effects. One avenue to achieve this goal is offered by the so-called externally corrected (ec) CCSD methods, which exploit some independent source of higher than pair clusters — whose importance rises with the increasing quasidegeneracy — to correct the standard CCSD equations. In view of the complementarity of SR CC and MR configuration interaction (CI) methods in their ability to describe the dynamic and nondynamic correlation effects, a particularly suitable and affordable external source proved to be an MR CISD wave function, based on a small active or model space, leading to the so-called reduced multireference (RMR) CCSD approach. Following a brief outline of the origins and of the status quo of the ecCCSD and RMR CCSD methodologies, their performance is illustrated by a few examples, and their potential and relationship with other approaches is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heitler W, London F (1927) Z Phys 44:455

    Article  CAS  Google Scholar 

  2. Hellmann H (1937) Einführung in die Quantenchemie. Franz Deuticke, Leipzig, Wien

    Google Scholar 

  3. Born M, Oppenheimer JR (1927) Ann Phys (Leipzig) 84:457

    CAS  Google Scholar 

  4. Hartree DR (1927) Proc Cambridge Phil Soc 24:89.

    Google Scholar 

  5. idem (1948) ibid 45:230

    Article  Google Scholar 

  6. Fock V(1930) Z Phys 61:126, 62:795.

    Google Scholar 

  7. idem (1932) ibid 75:622

    Article  Google Scholar 

  8. Hartree DR (1957) The Calculation of Atomic Structures. Wiley, New York

    Google Scholar 

  9. Klobukowski M, Carbó R (eds) (1990) Self-Consistent Field: Theory and Applications. Elsevier, Amsterdam

    Google Scholar 

  10. Hartree DR, Hartree W (1936) Proc Roy Soc (London) A154:588

    CAS  Google Scholar 

  11. Roothaan CCJ (1951) Rev Mod Phys 23:69

    Article  CAS  Google Scholar 

  12. Wahl AC (1964) J Chem Phys 41:2600

    Article  CAS  Google Scholar 

  13. Shavitt I (1977) The Method of Configuration Interaction. In: Schaefer III HF (ed) Methods of Electronic Structure Theory. Plenum, New York, London, p 189

    Google Scholar 

  14. Wilson S (1984) Electron Correlation in Molecules. Clarendon, Oxford

    Google Scholar 

  15. Harris FE, Monkhorst HJ, Freeman DL (1992) Algebraic and Diagrammatic Methods in Many-Fermion Theory. Oxford University Press, New York, Oxford

    Google Scholar 

  16. íŽk J (1996) J Chem Phys 45:4256.

    Google Scholar 

  17. idem (1969) Adv Chem Phys 14:35

    Article  Google Scholar 

  18. Bartlett RJ (1989) J Phys Chem 93:1697.

    Article  CAS  Google Scholar 

  19. idem (1995) Coupled-Cluster Theory: An Overview of Recent Developments. In: Yarkony DR (ed) Modern Electronic Structure Theory, Part II, Advanced Series in Physical Chemistry, Vol. 2. World Scientific, Singapore, p 1047

    Google Scholar 

  20. Paldus J, Li X (1999) Adv Chem Phys 110: (in press)

    Google Scholar 

  21. Raghavachari (1985) J Chem Phys 82:4607.

    Article  CAS  Google Scholar 

  22. Urban M, Noga J, Cole SJ, Bartlett RJ (1985) ibid 83:4041.

    Article  CAS  Google Scholar 

  23. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Article  CAS  Google Scholar 

  24. Lee TJ, Scuseria GE (1995) Achieving Chemical Accuracy with Coupled-Cluster Theory. In: Langhoff SR (ed) Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy. Kluwer, Dordrecht, p 47

    Google Scholar 

  25. Paldus J (1992) Coupled Cluster Theory. In: Wilson S, Diercksen GHF (eds) Methods in Computational Molecular Physics, NATO ASI Series, Series B: Physics, Vol 293. Plenum, New York, p 99

    Google Scholar 

  26. Paldus J (1994) Algebraic Approach to Coupled Cluster Theory. In: Malli GL (ed) Relativistic and Correlation Effects in Molecules and Solids, NATO ASI Series, Series B: Physics, Vol 318. Plenum, New York, p 207

    Google Scholar 

  27. Li X, Paldus J (1997) J Chem Phys 107:6257

    Article  CAS  Google Scholar 

  28. Li X, Paldus J (1998) J Chem Phys 108:637

    Article  CAS  Google Scholar 

  29. Li X, Paldus J (1998) Chem Phys Lett 286:145

    Article  CAS  Google Scholar 

  30. Li X, Paldus J (1998) Coll Czech Chem Commun 63:1381

    Article  CAS  Google Scholar 

  31. Li X, Paldus J (1999) J Chem Phys 110:2844

    Article  CAS  Google Scholar 

  32. Paldus J, Čížek J, Takahashi M (1984) Phys Rev A 30:2193

    Article  CAS  Google Scholar 

  33. Paldus J, Takahashi M, Cho RWH (1984) Phys Rev 30:4267

    Article  CAS  Google Scholar 

  34. Paldus J, Planelles J (1994) Theor Chim Acta 89:13

    CAS  Google Scholar 

  35. Stolarczyk LZ (1994) Chem Phys Lett 217:1

    Article  CAS  Google Scholar 

  36. Planelles J, Paldus J, Li X (1994) Theor Chim Acta 89:33.

    CAS  Google Scholar 

  37. Paldus J, Li X idem (1994) ibid 89:59

    CAS  Google Scholar 

  38. Piecuch P, Tobota R, Paldus J (1996) Phys Rev A 54:1210

    Article  CAS  Google Scholar 

  39. Peris G, Planelles J, Paldus J (1997) Intern J Quantum Chem 62:137

    Article  CAS  Google Scholar 

  40. Li X, Peris J, Planelles J, Rajadell F, Paldus J (1997) J Chem Phys 107:90

    Article  CAS  Google Scholar 

  41. Peris G, Rajadell F, Li X, Planelles J, Paldus J (1998) Mol Phys 94:235

    Article  CAS  Google Scholar 

  42. Čížek J, Paldus J (1971) Intern J Quantum Chem 5:359.

    Article  Google Scholar 

  43. Paldus J, Čížek J, Jeziorski B (1989) J Chem Phys 90:4356

    Article  CAS  Google Scholar 

  44. Li X, Paldus J (1994) J Chem Phys 101:8812

    Article  CAS  Google Scholar 

  45. Kondo AE, Piecuch P, Paldus J (1995) J Chem Phys 102:6511.

    Article  CAS  Google Scholar 

  46. Piecuch P, Paldus J idem (1996) ibid 104:8566.

    Article  CAS  Google Scholar 

  47. Piecuch P, Kondo AE, Špirko V, Paldus J (1996) ibid 104:4699.

    Article  CAS  Google Scholar 

  48. Špirko V, Piecuch P, Kondo AE, Paldus J (1996) ibid 104:4716.

    Article  Google Scholar 

  49. Piecuch P, Špirko V, Paldus J (1996) ibid 105:11068.

    Article  CAS  Google Scholar 

  50. Piecuch P, Špirko V, Kondo AE, Paldus J (1998) Mol Phys 94:55.

    Article  CAS  Google Scholar 

  51. Piecuch P, Spirko V, Paldus J (1998) Polish J Chem 72:1635

    CAS  Google Scholar 

  52. Peris G (1998) Ph.D. Thesis, Universitat Jaume I, Castello de la Plana, Spain

    Google Scholar 

  53. Jankowski K, Kowalski K (1996) Chem Phys Lett 256:141.

    Article  CAS  Google Scholar 

  54. Jankowski K, Grabowski I, Kowalski K (1998) J Chem Phys 109:6255.

    Article  CAS  Google Scholar 

  55. Li X, Grabowski I, Jankowski K, Paldus J (1999) Adv Quantum Chem (in press).

    Google Scholar 

  56. Oliphant N, Adamowicz L (1991) J Chem Phys 94:1229.

    Article  CAS  Google Scholar 

  57. Adamowicz L idem (1992) ibid 96:3739.

    Article  CAS  Google Scholar 

  58. Piecuch P, Oliphant N, Adamowicz L (1993) ibid 99:1875.

    Article  CAS  Google Scholar 

  59. Piecuch P, Adamowicz L (1994) Chem Phys Lett 221:121.

    Article  CAS  Google Scholar 

  60. Adamowicz L idem (1994) J Chem Phys 100:5792, 5857.

    Article  CAS  Google Scholar 

  61. Piecuch P, Kucharski SA, Bartlett RJ (1999) J Chem Phys 110:6103

    Article  CAS  Google Scholar 

  62. Meissner L, Grabowski I(1999) Chem Phys Lett 300:53

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Paldus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paldus, J., Li, X. (1999). Electron Correlation in Small Molecules: Grafting CI onto CC. In: Surján, P.R., et al. Correlation and Localization. Topics in Current Chemistry, vol 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48972-X_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-48972-X_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65754-5

  • Online ISBN: 978-3-540-48972-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics