Skip to main content

Polymers for Biomedical Applications: Improvement of the Interface Compatibility

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 149))

Abstract

The true aim of biomaterials research is to create implant surfaces which interact actively with the biological system and provoke exactly the same reactions as the corporal tissues do. The improvement in the interface compatibility of polymers selected for implantation by directed surface modification is an important contribution to biomaterial development. Different polymer properties are adjusted and characterized independently of the carrier polymer by means of introduction of modern surface analytical methods and surface techniques. In addition, the interactions between the modified polymer surface and the biological system are measured. In this way, the hydrophilization of a polyurethane (Tecoflex™) and a poly(ether sulfone) by plasma induced graftcopolymerization of hydrogels like poly (hydroxyethyl methacrylate) leads to improved blood compatibility. Functionalization by means of SO2 plasma treatment of medical grade poly(vinyl chloride) increases the adsorption of the basal membrane protein fibronectin, which correlates with an improvement in cell growth. A suitable interface for an improved cell growth of human vascular endothelial cells as well as for cornea endothelial cells has been created by immobilization of the cell adhesion mediator fibronectin using bifunctional spacer molecules at several carrier polymer surfaces like smooth poly(vinyl chloride), modified polyurethane, Tecoflex™ and poly (dimethyl siloxane).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ratner BD (1989) Biomedical applications of synthetic polymers. In: The synthesis characterization reaction and application of polymers. Pergamon Press, chap 7, p 201

    Google Scholar 

  2. Ratner BD (1993) J Biomed Mat Res 27:837

    Article  CAS  Google Scholar 

  3. Williams DF (1987) Definitions in Biomaterials. In: Progress in biomedical engineering. Elsevier, Amsterdam

    Google Scholar 

  4. Williams DF (1990) Concise encyclopedia of medical and dental materials. Pergamon Press

    Google Scholar 

  5. Szycher M (1991) High performance Biomaterials. In: A comprehensive guide to medical and pharmaceutical applications. Technomic, Lancaster

    Google Scholar 

  6. Blass CR (1992) Med Dev Tec 33:32

    Google Scholar 

  7. Williams DF (1994) J Mat Sci 5:303

    Google Scholar 

  8. Klinkmann H, Falkenhagen D, Courtney JM, Gurland HJ (eds) (1987) Uremia therapy. Springer, Berlin Heidelberg New York

    Google Scholar 

  9. Williams DF (1990) Interdisk Sci Rev 15:20

    Google Scholar 

  10. Ikada Y, Shalaby W. et al. (eds) (1994) ACS Symp Series No. 540

    Google Scholar 

  11. Wegner G (1985) Mehrphasige Polymere. In: Batzer H (ed) Polymere Werkstoffe. Thieme Verlag, Stuttgart, p 679

    Google Scholar 

  12. Wirsching J (1997) PhD thesis, Technical University Aachen, Shaker Verlag Aachen

    Google Scholar 

  13. Castner DG, Ratner BD, Hoffman AS (1990) J Biomater Sci Polymer Edn 1:191

    Article  CAS  Google Scholar 

  14. Grainger DW, Okano T, Kim SW, Castner DG, Ratner BD Briggs D, Sung YK (1990) J Biomed Mat Res 24:547

    Article  CAS  Google Scholar 

  15. Tyler BJ, Ratner BD, Castner DG, Briggs D (1992) J Biomed Mat Res 26:273

    Article  CAS  Google Scholar 

  16. Ratner BD (1987) Surface contamination and Biomaterials. In:Mittal KL (ed) Treatise on clean surface technology. Plenum Press, New York, p 247

    Google Scholar 

  17. Ziats NP, Miller KM, Anderson JM (1988) Biomaterials 9:5

    Article  CAS  Google Scholar 

  18. Bakker D, van Blitterswijk CA, Hesseling SC, Grote JJ, Daems WT (1988) Biomaterials 9:14

    Article  CAS  Google Scholar 

  19. Williams DF (1987) J Mater Sci 22:3421

    Article  CAS  Google Scholar 

  20. Dankert J, Hogt AH, Feijen J (1986) In: Williams DF (ed) CRC critical reviews in bio-compatibility, p 219

    Google Scholar 

  21. Courtney JM, Lamba NMK, Sundaram S, Forbes CD (1994) Biomaterials 15:737

    Article  CAS  Google Scholar 

  22. Salzman EW (1986) Blood material interaction In: Interaction of the blood with natural and artificial surfaces, Dekker Inc, New York, p 39

    Google Scholar 

  23. Meyer JG (1986) Blutgerinnung und Fibrinolyse, Deutsche Ärzte Verlag, Köln

    Google Scholar 

  24. Baszkin A (1986) The effect of polymer surface composition and structure on adsorption of plasma proteins. In:Dawids S, Bantjes A (eds) Blood compatible materials and their testing. Martinus Nijhoff Publishers, Dortrecht, p 39

    Google Scholar 

  25. Brash JL (1983) Mechanism of adsorption of proteins to solid surfaces and its relationship to blood compatibility. In:Szycher M (ed) Biocompatible polymers, metals and composites. Technomic, Lancaster, p 35

    Google Scholar 

  26. Kottke-Marchant K, Anderson JM, Umemura Y, Marchant RE (1989) Biomaterials 10:147

    Article  CAS  Google Scholar 

  27. Ikada Y (1984) Adv Polym Sci 57:103

    CAS  Google Scholar 

  28. Andrade JD (1973) Med Instrum 7:110

    CAS  Google Scholar 

  29. Baier RE, Gott VL, Feruse A (1970) Trans Amer Soc Artif Intern Organs 16:50

    CAS  Google Scholar 

  30. Ratner BD, Hoffman AS, Hanson SR, Harker LA, Whiffen JD (1979) J Polym Sci Polym Symp 66:363

    Article  CAS  Google Scholar 

  31. Bantjes A (1978) Brit Polym J 10:267

    Article  CAS  Google Scholar 

  32. Bruck SD (1979) J Polym Sci Polym Symp 66:283

    Article  CAS  Google Scholar 

  33. Sawyer PN, Srinivasan S (1967) Am J Surg 114:42

    Article  CAS  Google Scholar 

  34. Norde W, Lyklema J (1985) Proton titration and electrokinetic studies of adsorbed protein layers. In: Andrade JD (ed) Surface and interfacial aspects of biomedical polymers. Plenum Press, New York, p 241

    Google Scholar 

  35. Szycher M (1983) Thrombosis hemostasis and thrombolysis at prosthetic interfaces. In:Szycher M (ed) Biocompatible polymers, metals and composites. Technomic, Lancaster

    Google Scholar 

  36. Yu J, Sundaram S, Weng D, Courtney JM, Moran CR, Graham NB (1991) Biomaterials 12:119

    Article  CAS  Google Scholar 

  37. Beissinger RL, Leonard EF (1981) Trans Amer Soc Artif Intern Organs 27:225

    CAS  Google Scholar 

  38. Sonderquist ME, Walton AG (1980) J Colloid Interface Sci 75:386

    Article  Google Scholar 

  39. Lundström I, Elwing H (1990) J Colloid Interface Sci 136:68

    Article  Google Scholar 

  40. Vroman L (1987) Semin Thromb Hemostasis 13:79

    Article  CAS  Google Scholar 

  41. Vroman L (1987) Ann NY Acad Sci 516:300

    Article  CAS  Google Scholar 

  42. Garbassi F, Morra M (1994) Biomedical materials. In:Ochiello E (ed) Polymer surfaces, from physics to technology. Wiley, Chichester, p 395

    Google Scholar 

  43. Hess F, Jerusalem C, Braun B, Grande P (1984) New formation of the neointima in the polymeric artifical vessels. In:Planck H, Egbers G, Syre I (eds) Polyurethane in bio-medical engineering. Elsevier, Amsterdam, p 301

    Google Scholar 

  44. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1990) Molekularbiologie der Zelle. VCH, Weinheim

    Google Scholar 

  45. Wachem PB (1987) Interaction of cultured human endothelial cells with polymeric surfaces, PhD thesis, University of Twente, Netherlands

    Google Scholar 

  46. Klee D, Höcker H, Mittermayer C (1987) Plastverarbeiter 38/4:54; 38/5:76; 38/6:52

    Google Scholar 

  47. Pierschbacher MD, Hayman EG, Ruoslahti E (1983) Proc Natl Acad Sci USA 80:1224

    Article  CAS  Google Scholar 

  48. Pierschbacher MD, Ruoslahti E (1984) Nature 309:30

    Article  CAS  Google Scholar 

  49. Pierschbacher MD, Ruoslahti E (1984) Proc Natl Acad Sci USA 81:5985

    Article  CAS  Google Scholar 

  50. Ruoslathi E, Pierschbacher MD (1986) Cell 44:517

    Article  Google Scholar 

  51. Müller G, Gurrath M, Kessler H, Timpl R (1992) Angew Chem 104:341

    Article  Google Scholar 

  52. Lin HB, García-Echeverría C, Asakura S, Sun W, Mosher DF, Cooper SL (1992) Biomaterials 13:905

    Article  CAS  Google Scholar 

  53. Sentissi JM, Ramberg K, O’Donnell RJ, Connolly RJ, Callow AD (1986) Surgery 99:337

    CAS  Google Scholar 

  54. Lin HB, Sun W, Mosher DF, García-Echeverría C, Schaufelberger K, Lelkes PI, Cooper SL (1994) 28:329

    Google Scholar 

  55. Ratner BD (1985) Graft copolymer and block copolymer surfaces. In: Andrade JD (ed) Surface and interfacial aspects of biomedical polymers, Vol: Surface chemistry and physics. Plenum Press, New York, p 373

    Google Scholar 

  56. Yui N, Kataoka K, Sakurai Y, Akutsu T (eds) (1986) Microdomain-structured polymers as antithrombogenic materials in artificial heart. Springer, Berlin Heidelberg New York

    Google Scholar 

  57. Okano T, Nishiyama S, Shinohara I, Akaike T, Sakurai Y, Kataoka K, Tsuruta T (1981) J Biomed Mat Res 15:393

    Article  CAS  Google Scholar 

  58. Lelah MD, Cooper SL (1986) Polyurethanes in medicine. CRC Press, Boca Raton, Florida

    Google Scholar 

  59. Sharma CP, Szycher M (1991) Blood compatible materials and devices. Technomic, Lancaster

    Google Scholar 

  60. Leake DL, Cenni E, Cavedagna D, Stea S, Ciapetti G, Pizzoferrato A (1989) Biomaterials 10:441

    Article  CAS  Google Scholar 

  61. Matsuda T (1989) Nephrol Dial Transplant 4:60

    Google Scholar 

  62. Lee JH, Lee HB, Andrade JD (1995) Prog Polym Sci 20:1043

    Article  CAS  Google Scholar 

  63. Andrade JD (1976) Hydrogels for medical and related applications. ACS Symp Series

    Google Scholar 

  64. Hoffmann AS (1984) Adv Polym Sci 57:101

    Google Scholar 

  65. Forbes CD, Courtney JM (1994) Thrombosis and artificial surfaces. In:Bloom AL, Forbes CD, Thomas DP, Tuddenham EGD (eds) Haemostasis and thrombosis. Churchill Livingstone, Edinburgh, p 1301

    Google Scholar 

  66. Engbers GH, Feijen J (1992) Int J Artif Org 14:199

    Google Scholar 

  67. Chapman D, Charles SA (1992) Chem Br 28:253

    CAS  Google Scholar 

  68. Hayward JA, Durrani AA, Shelton CJ, Lee DC, Chapman D (1986) Biomaterials 7:126

    Article  CAS  Google Scholar 

  69. Jerg KR, Emonds M, Müller U, Keller R, Baumann H (1991) ACS Polym Preprints 32:243

    CAS  Google Scholar 

  70. Ratner BD (1988) The surface characterization of biomedical materials. In:Ratner BD (ed) Progress in Biomaterials engineering, vol 6. Elsevier, Amsterdam, p 13

    Google Scholar 

  71. Vidrine DW (1982) Photoacoustic Fourier transform infrared spectroscopy of solids and liquids. In:Fourier transform infrared spectroscopy

    Google Scholar 

  72. Fries T (1994) Deutscher Verband für Materialprüfung, p 127

    Google Scholar 

  73. Sacher E (1988) The determination of the surface tensions of solid films. In:Ratner BD (ed) Progress in Biomaterials engineering, vol 6: Surface characterization of Biomaterials. Elsevier, Amsterdam, p 53

    Google Scholar 

  74. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741

    Article  CAS  Google Scholar 

  75. Pike FD, Thakkar CR Interfacial tension measurement by an improved Wilhelmy technique. In:Kerker M (ed) Colloid and interface science, p 375

    Google Scholar 

  76. Wilhelmy LF (1863) Pogg Ann 119:177

    Article  Google Scholar 

  77. Matsunaga T, Ikada Y (1981) J Colloid Interface Sci 84:8

    Article  CAS  Google Scholar 

  78. Li D, Neumann AW (1992) J Colloid Interface Sci 148:190

    Article  CAS  Google Scholar 

  79. Johnson RE, Dettre R (1969) Wettability and contact angles. In:Surface and colloid science. Wiley, New York, p 85

    Google Scholar 

  80. Norde W, Rouwendal E (1990) J Colloid Interface Sci 139:169

    Article  CAS  Google Scholar 

  81. van Wagenen RA, Andrade JD (1980) J Colloid Interface Sci 76:305

    Article  Google Scholar 

  82. van Wagenen RA, Coleman DL, King RN, Triolo P, Brostrom L, Smith LM, Gregonis DE, Andrade JD (1981) J Colloid Interface Sci 84:155

    Article  Google Scholar 

  83. Lyklema J (1985) Interfacial electrochemistry of surfaces with biomedical relevance. In:Surface and interfacial aspects of biomedical polymers, p 293

    Google Scholar 

  84. Jacobasch HJ, Bobeth W (1975) Das Papier 29:555

    CAS  Google Scholar 

  85. Harlow E, Lane D (1989)

    Google Scholar 

  86. Peters JH, Baumgarten M (1990) Monoklonale Antikörper, 2 Aufl, Berlin, Heidelberg

    Google Scholar 

  87. Childs RE, Bardsley WG (1975) Biochem J 145:93

    CAS  Google Scholar 

  88. Nygren H, Stenberg M (1988) J Biomedical Mat Research 22:1

    Article  CAS  Google Scholar 

  89. Brauner A, Augthun M, Kaden P (1988) Z Zahnärztl Implantol 4:223

    Google Scholar 

  90. Augthun M, Brauner A, Kaden P, Mittermayer C (1988) Z Zahnärztl Implantol 4:228

    Google Scholar 

  91. Kirkpatrick CJ, Otterbach T, Anderheiden D, Schiefer J, Richter H, Höcker H, Mittermayer C, Dekker A (1992) Cells & Materials 2:169

    Google Scholar 

  92. Courtney JM, Travers M, Douglas JT, Lowe GDO, Forbes CD, Ryan CJ, Bowry SK, Prentice CRM (1986) Assessment of blood compatibility. In:Dawids S, Bantjes A (eds) Blood compatible materials and their testing. Martinus Nijhoff Publishers, Dortrecht, p 129

    Google Scholar 

  93. Anderson JM, Kottke-Marchant K (1985) CRC Critical Reviews in Biocompatibility 1:111

    CAS  Google Scholar 

  94. Ikada Y, Iwata H, Horii F, Matsunaga T, Taniguchi M, Suzuki M, Taki W, Yamagata S, Yonekawa Y, Handa H (1981) J Biomed Mat Res 15:697–718

    Article  CAS  Google Scholar 

  95. van Wachem PB, Hogt AH, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG (1987) Biomaterials 8:323

    Article  Google Scholar 

  96. Kaelble DH, Moacanin J (1977) Polymer 18:475

    Article  CAS  Google Scholar 

  97. Coleman DL, Gregonis DE, Andrade JD (1982) J Biomed Mat Res 16:381

    Article  CAS  Google Scholar 

  98. Bantjes A (1978) Brit Polym J 10:147

    Article  Google Scholar 

  99. Klee D, Severich B, Höcker H (1996) Makromol Chem Makromol Symp 103:19

    CAS  Google Scholar 

  100. Yasuda HK, Yeh YS, Fusselman S (1990) Pure Appl Chem 62:1698

    Article  Google Scholar 

  101. Klee D, Höcker H (1995) Spektrum der Wissenschaft 6:90

    Google Scholar 

  102. Höcker H, Klee D (1996) Macromol Symp 102:421

    Google Scholar 

  103. López GP, Ratner BD, Rapoza RJ, Horbett TA (1993) Macromolecules 26:3247

    Article  Google Scholar 

  104. Hoffman AS (1982) Biomaterials 199:1

    Google Scholar 

  105. Boenig HV (1982) Plasma science and technology. Carl Hanser, München

    Google Scholar 

  106. Kang ET, Neoh KG, Tan KL, Uyama U, Morikawa N, Ikada Y (1992) Macromolecules 25:1959

    Article  CAS  Google Scholar 

  107. Rose PW, Liston EM (1985) Plastics Engineering 41:41

    CAS  Google Scholar 

  108. Kang ET, Neoh KG, Tan KL (1992) Macromolecules25:6842

    Article  CAS  Google Scholar 

  109. Horbett TA (1986) Hydrogels in medicine and pharmacy, 1st edn. CRC Press, New York

    Google Scholar 

  110. Mok S, Worsfold DJ, Fouda A, Natsuura T (1994) J Appl Polym Sci 51:193

    Article  CAS  Google Scholar 

  111. Hsiue GH, Lee SD, Wang CC, Hung-Ishiue M, Chuen-Tsuei Chang P (1994) Biomaterials 15:163

    Article  CAS  Google Scholar 

  112. Thelen H, Kaufmann R, Klee D, Höcker H (1995) Fresenius J Anal Chem 353:290

    Article  CAS  Google Scholar 

  113. Thelen H (1996) PhD thesis, Technical University of Aachen

    Google Scholar 

  114. Andrade JD, King RN, Gregonis DE, Coleman DL (1979) J Polym Sci Symp 66:313

    Article  CAS  Google Scholar 

  115. Elwing H, Askendal A, Lundström I (1987) Prog Colloid Polym Sci 74:103

    Article  Google Scholar 

  116. Sheu MS, Hoffmann AS, Feijen J (1992) J Adhes Sci Technol 6:995

    Article  CAS  Google Scholar 

  117. Plüster W, PhD thesis, RWTH Aachen (1998) 119. Cryer D (1983) Biomedical interactions at the endothelium. Elsevier, Amsterdam

    Google Scholar 

  118. Potts JR, Campbell ID (1985) Curr Opin Cell Biol 6:648

    Article  Google Scholar 

  119. Mc Donagh J (1985) Plasma fibronectin. Academic, New York

    Google Scholar 

  120. Dickinson CD, Veerapandian B, Dia XP, Hamlin RC, Xuong NH, Ruoshlahti E, Ely KR (1994) J Mol Biol 236:1079

    Article  CAS  Google Scholar 

  121. Giroux TA, Cooper SL (1991) J of Appl Poly Sci 43:145

    Article  CAS  Google Scholar 

  122. Clark DT (1982) Pure Appl Chem 54:415

    Article  CAS  Google Scholar 

  123. Briggs D, Kendall CR (1982) Int J Adhesion Adhes:13

    Google Scholar 

  124. Giga J, Verbist JJ, Josseaux P, Mesmaeker AK (1985) Surf Interface Anal 7:163

    Article  Google Scholar 

  125. Wren AG, Phillipps RW, Tolentino LU (1979) J Colloid Interface Sci 70:544

    Article  CAS  Google Scholar 

  126. Thiele L (1979) Acta Polymerica 30:323

    Article  CAS  Google Scholar 

  127. Harlow E, Lane D (eds) Antibodies, a laboratory manual. Cold Spring Harbor Laboratory (1989)

    Google Scholar 

  128. Klee D, Villari RV, Höcker H (1994) J Mater Sci: Mater Med 5:592

    Article  CAS  Google Scholar 

  129. Tamada Y, Ikada Y (1993) Polymer 34:2208

    Article  CAS  Google Scholar 

  130. Mittermayer C, Klee D, Richter H European Patent 0290642, Verfahren zur Besiedlung einer Polymeroberflähe mit menschlichen Gefäßinnenhautzellen

    Google Scholar 

  131. Anderheiden D, Brenner O, Klee D, Kaufmann R, Richter HA, Mittermayer C, Höcker H (1991) Angew Makromolekul Chem 185:109

    Article  Google Scholar 

  132. Lorenz G, Klee D, Höcker H, Mittermayer C (1995) J Appl Polym Sci 57:391

    Article  CAS  Google Scholar 

  133. Trevar MD (1980) Immobilized enzymes. Wiley, New York

    Google Scholar 

  134. Brandt J, Andersson LO, Porath J (1975) Biochim Biophys Acta 386:196

    CAS  Google Scholar 

  135. Breuers W, Klee D, Höcker H, Mittermayer C (1991) J of Mater Sci: Mater Med 2:106

    Article  CAS  Google Scholar 

  136. Anderheiden D (1989) Diplomarbeit am Lehrstuhl für Textilchemie und Makromolekulare Chemie. RWTH Aachen

    Google Scholar 

  137. Anderheiden D, Trommler A, Heller B, Klee D, Dekker A, Richter HA, Kirkpatrick CJ, Mittermayer C, Höcker H (1992) Adv Biomaterials 10:199

    CAS  Google Scholar 

  138. Schroeder K, Klee D, Höcker H, Leute A, Benninghoven A, Mittermayer C (1995) J Appl Polym Sci 58:699

    Article  CAS  Google Scholar 

  139. Breuers W, Klee D, Plein P, Richter HA, Menges G, Mittermayer C, Höcker H (1987) Kunststoffe 77:1273

    CAS  Google Scholar 

  140. Mittermayer C, Briolant F, Richter HA, Klee D, Anderheiden D, Breuers W, Diaz-Nogueira E, Füzesil L, Gamero A, Grau M, Kaden P, Varela-Duran J, Lafraya JA, Lo-evenich H, Maurin N, Ochea JR, Kirkpatrick CJ, Höcker H (1992) European Technology Awards. Proc 4th BRITE/EURAM, Sevilla, p 90

    Google Scholar 

  141. Brandt J, Andersson LO, Porath J (1975) Biochim Biophys Acta 386:196

    CAS  Google Scholar 

  142. Briggs D (1983) Applications of XPS in polymer technology. In: Briggs D, Seah MP (eds) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Wiley, New York, p 359

    Google Scholar 

  143. Dennis AM, Howard RA, Kadish KM, Bear JL, Brace J, Winograd N (1980) Inorg Chim Acta 44:139

    Article  Google Scholar 

  144. Schulze PD, Shaffer SL, Hance RL, Utley DL (1983) J Vac Sci Technol 1:97

    Article  CAS  Google Scholar 

  145. Lorenz G (1995) PhD thesis, Technical University Aachen, Shaker Verlag, Aachen

    Google Scholar 

  146. Wahlgren M, Arnebrant T(1991) Tibtech 9:210

    Google Scholar 

  147. Wirsching J, Klee D, Höcker H, Dekker A, Mittermayer C (1995) Proc 12th European Conference on Biomaterials, Porto, p 104

    Google Scholar 

  148. Schöfer K, Höcker H (1996) Melliand Textilber 77:402

    Google Scholar 

  149. Klee D, Lorenz G, Wirsching J, Bienert H, Dekker A, Höcker H, Mittermayer C (1996) Proc 5th World Biomaterials Congress, Toronto, p 562

    Google Scholar 

  150. Skechan P, Storbuy R., Scudiero D (1990) J Natl Cancer Inst 82:1197

    Google Scholar 

  151. Langefeld S, Numan CJ, von Fischern T, Becker J, Bienert H, Völcker N, Reim M, Schrage NF (1997) Ophthalmic Research 29(S1):78

    Google Scholar 

  152. Völker N, Klee D, Höcker H, Langefeld S (1998) J Mater Sci: Mater Med, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. C. Eastmond H. Höcker D. Klee

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klee, D., Höcker, H. (2000). Polymers for Biomedical Applications: Improvement of the Interface Compatibility. In: Eastmond, G.C., Höcker, H., Klee, D. (eds) Biomedical Applications Polymer Blends. Advances in Polymer Science, vol 149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48838-3_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-48838-3_1

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65933-4

  • Online ISBN: 978-3-540-48838-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics