Advertisement

Bisimulation Algorithms for Stochastic Process Algebras and Their BDD-Based Implementation

  • Holger Hermanns
  • Markus Siegle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1601)

Abstract

Stochastic process algebras have been introduced in order to enable compositional performance analysis. The size of the state space is a limiting factor, especially if the system consists of many cooperating components. To fight state space explosion, various proposals for compositional aggregation have been made. They rely on minimisation with respect to a congruence relation. This paper addresses the computational complexity of minimisation algorithms and explains how efficient, BDD-based data structures can be employed for this purpose.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Baier and H. Hermanns. Weak Bisimulation for Fully Probabilistic Processes. In Proc. CAV’ 97, Springer LNCS 1254:119–130, 1997.Google Scholar
  2. 2.
    M. Bernardo and R. Gorrieri. A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism, Priorities, Probabilities and Time. Theoretical Computer Science 202:1–54, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS. Computer Networks and ISDN Systems 14:25–59, 1987.CrossRefGoogle Scholar
  4. 4.
    A. Bouali. Weak and branching bisimulation in FCTOOL. Rapports de Recherche 1575, INRIA Sophia Antipolis, Valbonne Cedex, France, 1992.Google Scholar
  5. 5.
    H. Bruchner. Symbolische Manipulation von stochastischen Transitionssystemen. Internal study, Universität Erlangen-Nürnberg, IMMD VII, 1998. in German.Google Scholar
  6. 6.
    R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE Transaction on Computers, C-35(8):677–691, August 1986.CrossRefzbMATHGoogle Scholar
  7. 7.
    R.E. Bryant and Y. Chen. Verification of Arithmetic Functions with Binary Moment Diagrams. In Proc. 32nd Design Automation Conference, 535–541, ACM/IEEE, 1995.Google Scholar
  8. 8.
    E.M. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-terminal Binary Decision Diagrams: An efficient data structure for matrix representation. In Proc. International Workshop on Logic Synthesis, Tahoe City, May 1993.Google Scholar
  9. 9.
    D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progressions. In Proc. 19th ACM Symposium on Theory of Computing, 1987.Google Scholar
  10. 10.
    R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for symbolic model checking in CCS. Distributed Computing, 6:155–164, 1993.CrossRefzbMATHGoogle Scholar
  11. 11.
    J.C. Fernandez. An Implementation of an Efficient Algorithm for Bisimulation Equivalence. Science of Computer Programming, 13:219–236, 1989.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    R. J. van Glabbeek and W. Weijland:. Branching Time and Abstraction in Bisimulation Semantics. Journal of the ACM, 43(3):555–600, 1996.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. F. Groote and F.W. Vaandrager. An efficient algorithm for branching bisimulation and stuttering equivalence. In Proc. ICALP’90, Springer LNCS 443:626–638, 1990.Google Scholar
  14. 14.
    G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian Analysis of Large Finite State Machines. IEEE Transactions on CAD, 15(12):1479–1493, 1996.CrossRefGoogle Scholar
  15. 15.
    H. Hermanns. Interactive Markov Chains. PhD thesis, Universität Erlangen-Nürnberg, 1998.Google Scholar
  16. 16.
    H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras-Between LOTOS and Markov Chains. Computer Networks and ISDN Systems, 30(9–10):901–924, 1998.CrossRefGoogle Scholar
  17. 17.
    H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences, and Axioms for MTIPP. In Proc. 2nd PAPM Workshop. University of Erlangen-Nürnberg, IMMD 27(4):71–87, 1994.Google Scholar
  18. 18.
    H. Hermanns and J.P. Katoen. Automated Compositional Markov Chain Generation for a Plain Old Telephony System. to appear in Science of Computer Programming, 1998.Google Scholar
  19. 19.
    H. Hermanns and M. Lohrey. Priority and maximal progress are completely axiomatisable. In Proc. CONCUR’98, Springer LNCS 1466:237–252, 1998.Google Scholar
  20. 20.
    H. Hermanns and M. Siegle. Computing Bisimulations for Stochastic Process Algebras using Symbolic Techniques. In Proc. 6th Int. PAPM Workshop, 103–118, Nice, 1998.Google Scholar
  21. 21.
    H. Hermanns, J. Meyer-Kayser and M. Siegle. Multi Terminal Binary Decision Diagrams to Represent and Analyse Continuous Time Markov Chains. submitted for publication, 1999.Google Scholar
  22. 22.
    J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.Google Scholar
  23. 23.
    T. Huynh and L. Tian. On some Equivalence Relations for Probabilistic Processes. Fundamenta Informaticae, 17:211–234, 1992.MathSciNetzbMATHGoogle Scholar
  24. 24.
    P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes, and Three Problems of Equivalence. Information and Computation, 86:43–68, 1990.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    J. G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.Google Scholar
  26. 26.
    Y.-T. Lai and S. Sastry. Edge-Valued Binary Decision Diagrams for Multi-Level Hierarchical Verification. In 29th Design Automation Conference,608–613, ACM/IEEE, 1992.Google Scholar
  27. 27.
    K. Larsen and A. Skou. Bisimulation through Probabilistic Testing. Information and Computation, 94(1):1–28, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.zbMATHGoogle Scholar
  29. 29.
    R. Paige and R. Tarjan. Three Partition Refinement Algorithms. SIAM Journal of Computing, 16(6):973–989, 1987.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    M. Siegle. Technique and tool for symbolic representation and manipulation of stochastic transition systems. TR IMMD 7 2/98, Universität Erlangen-Nürnberg, March 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Holger Hermanns
    • 1
  • Markus Siegle
    • 2
  1. 1.Systems Validation Centre, FMG/CTITUniversity of TwenteEnschedeThe Netherlands
  2. 2.Informatik 7, IMMDUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations