Skip to main content

On the Separation of Maximally Violated mod-k Cuts

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1610))

  • 994 Accesses

Abstract

Separation is of fundamental importance in cutting-plane based techniques for Integer Linear Programming (ILP). In recent decades, a considerable research effort has been devoted to the definition of effective separation procedures for families of well-structured cuts. In this paper we address the separation of Chvátal rank-1 inequalities in the context of general ILP’s of the form min{c T x : Axb, x integer}, where A is an m × n integer matrix and b an m-dimensional integer vector. In particular, for any given integer k we study mod-k cuts of the form γ T Ax ≤ ⌊γ T b⌋ for any γ ∈ {0, 1/k, . . ., (k − 1)/k}m such that γ T is integer. Following the line of research recently proposed for mod- 2 cuts by Applegate, Bixby, Chvátal and Cook [1] and Fleischer and Tardos [16], we restrict to maximally violated cuts, i.e., to inequalities which are violated by (k — 1)/k by the given fractional point. We show that, for any given k, such a separation requires O(mnmin{m, n}) time. Applications to the TSP are discussed. In particular, for any given k, we propose an O(|V|2|E*|)-time exact separation algorithm for mod-k cuts which are maximally violated by a given fractional TSP solution with support graph G* = (V,E*). This implies that we can identify a maximally violated TSP cut whenever a maximally violated (extended). comb inequality exists. Finally, specific classes of (sometimes new) facet-defining mod-k cuts for the TSP are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Applegate, R. Bixby, V. Chvátal, W. Cook (1995). Finding cuts in the TSP (A preliminary report). Technical Report Technical Report 95-05, DIMACS, Rutgers University, New Brunswick, NJ.

    Google Scholar 

  2. E. Balas, S. Ceria, G. Cornuéjols (1993). A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. (A) 58, 295–324.

    Article  Google Scholar 

  3. E. Balas, S. Ceria, G. Cornuéjols (1996). Mixed 0–1 programming by lift-and-project in a branch-and-cut framework. Management Sci. 42, 1229–1246.

    Article  MATH  Google Scholar 

  4. E. Balas, S. Ceria, G. Cornuéjols, N. Natraj (1996). Gomory cuts revisited. Oper. Res. Lett. 19, 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Balas, M. Fischetti (1993). A lifting procedure for the asymmetric traveling salesman polytope and a large new class of facets. Math. Program. (A) 58, 325–352.

    Article  MathSciNet  Google Scholar 

  6. A. Caprara, M. Fischetti (1996). {0, 1/2}-Chvátal-Gomory cuts. Math. Program. (A) 74, 221–235.

    Article  MathSciNet  Google Scholar 

  7. R. Carr (1995). Separating clique tree and bipartition inequalities in polynomial time. E. Balas, J. Clausen (eds.). Integer Programming and Combinatorial Optimization 4, Lecture Notes in Computer Science, 920, Berlin. Springer-Verlag, 40–49.

    Google Scholar 

  8. S. Ceria, G. Cornuéjols, M. Dawande (1995). Combining and strengthening Gomory cuts. E. Balas, J. Clausen (eds.). Integer Programming and Combinatorial Optimization 4, Lecture Notes in Computer Science, 920, Berlin. Springer-Verlag, 438–451.

    Google Scholar 

  9. T. Christof, M. Jünger, G. Reinelt (1991). A complete description of the traveling salesman polytope on 8 nodes. Oper. Res. Lett. 10, 497–500.

    Article  MATH  MathSciNet  Google Scholar 

  10. V. Chvátal (1973). Edmonds polytopes and weakly Hamiltonian graphs. Math. Program. 5, 29–40.

    Article  MATH  Google Scholar 

  11. H. Cohen (1995). A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin.

    Google Scholar 

  12. G. Dantzig, D. Fulkerson, S. Johnson (1954). Solution of a large scale traveling-salesman problem. Oper. Res. 2, 393–410.

    MathSciNet  Google Scholar 

  13. E.A. Dinitz, A.V. Karzanov, M.V. Lomosonov (1976). On the structure of a family of minimal weighted cuts in a graph. A.A. Fridman (ed.) Studies in Discrete Optimization, Moscow Nauka, 290–306 (in Russian).

    Google Scholar 

  14. J. Edmonds (1965). Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl. Bureau of Standards 69, 125–130.

    MATH  MathSciNet  Google Scholar 

  15. L. Fleischer (1998). Building the chain and cactus representations of all minimum cuts from Hao-Orlin in same asymptotic run time. R. Bixby, E. Boyd, R. Rios Mercado (eds.). Integer Programming and Combinatorial Optimization 6, Lecture Notes in Computer Science, Berlin. Springer-Verlag.

    Google Scholar 

  16. L. Fleischer, É. Tardos (1996). Separating maximally violated comb inequalities in planar graphs. W. Cunningham, S. McCormick, M. Queyranne (eds.). Integer Programming and Combinatorial Optimization 5, Lecture Notes in Computer Science, 1084, Berlin. Springer-Verlag, 475–489. Revised version to appear in Math. Oper. Res.

    Google Scholar 

  17. M. Grötschel, M. Padberg (1979). On the symmetric traveling salesman problem I: Inequalities. Math. Program. 16, 265–280.

    Article  MATH  Google Scholar 

  18. M. Grötschel, M. Padberg (1979). On the symmetric traveling salesman problem II: lifting theorems and facets. Math. Program. 16, 281–302.

    Article  MATH  Google Scholar 

  19. M. Grötschel, M. Padberg (1985). Polyhedral theory. E. Lawler, J. Lenstra, A. Rinnooy Kan, D. Shmoys (eds.). The Traveling Salesman Problem, John Wiley & Sons, Chichester, 251–305.

    Google Scholar 

  20. D. Karger, C. Stein (1996). A new approach to the minimum cut problem. J. ACM 43, 601–640.

    Article  MATH  MathSciNet  Google Scholar 

  21. A.N. Letchford (1998). Separating a superclass of comb inequalities in planar graphs. Technical Report, Dept. of Man. Science, The Management School, Lancaster University, 1998.

    Google Scholar 

  22. D. Naddef, G. Rinaldi (1988). The symmetric traveling salesman polytope: New facets from the graphical relaxation. Technical Report 248, IASI-CNR, Rome.

    Google Scholar 

  23. D. Naddef, G. Rinaldi (1993). The graphical relaxation: A new framework for the symmetric traveling salesman polytope. Math. Program. (A) 58, 53–88.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Padberg, G. Rinaldi (1991). A branch and cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33, 60–100.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Schrijver (1986). Theory of Linear and Integer Programming, John Wiley & Sons, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caprara, A., Fischetti, M., Letchford, A.N. (1999). On the Separation of Maximally Violated mod-k Cuts. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds) Integer Programming and Combinatorial Optimization. IPCO 1999. Lecture Notes in Computer Science, vol 1610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48777-8_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-48777-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66019-4

  • Online ISBN: 978-3-540-48777-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics