Advertisement

Polymer Analysis by Thermal-Diffusion Forced Rayleigh Scattering

  • W. Köhler
  • R. Schäfer
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 151)

Abstract

The holographic grating technique of thermal-diffusion forced Rayleigh scattering (TDFRS) is used for the study of Fickian and thermal diffusion in simple liquids and polymer solutions. All three diffusion coefficients D th , D, D t and the Soret coefficient S t can be obtained from a single experiment. Due to the short diffusion length of the order of a few μm, the whole system is very stable against perturbations like convection. TDFRS and photon correlation spectroscopy (PCS) are compared in detail. In case of polydisperse solutes, TDFRS does not suffer from the high scattering power of heavy components, which dominate the PCS correlation function. Quantities of interest for polymer analysis are distribution functions and averages of diffusion coefficients and molar masses. The weight distribution of the hydrodynamic radius follows directly from the heterodyne diffraction efficiency, without the need to resort to scaling relations. Pseudostochastic binary sequences with a broad power spectrum allow for the direct measurement of the linear response function, to which the individual molar masses contribute strictly concentration proportional, with a high spectral power density. Certain diffusive modes can be suppressed or enhanced by random binary sequences with colored power spectra, which are tailored to the specific experimental problem.

Keywords

Diffuson thermal diffusion forced Rayleigh scattering polymer solutions poly-dispersity pseudostochastic noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ludwig C (1856) Sitzber Akad Wiss Wien Math-naturw. Kl 20:539Google Scholar
  2. 2.
    Soret C (1879) Arch Geneve 3:48Google Scholar
  3. 3.
    Debye P, Bueche A M (1948) In: Robinson H A (ed) High-Polymer Physics Chemical Publishing, Brooklyn, p 497Google Scholar
  4. 4.
    Langhammer G H, Pfennig H, Quitzsch (1958) K Z Elektrochem 62:458Google Scholar
  5. 5.
    Ecenarro O, Madariaga J A, Navarro J, Santamaria C M, Carrion J A, Saviron J M (1990) J Phys Condens Matter 2:2289CrossRefGoogle Scholar
  6. 6.
    Ecenarro O, Madariaga J A, Navarro J, Santamaria C M, Carrion J A, Saviron J M (1994) Macromolecules 27:4968CrossRefGoogle Scholar
  7. 7.
    Tyrrell H JV (1961) Diffusion and Heat ow in Liquids Butterworth LondonGoogle Scholar
  8. 8.
    Emery A H, Drickamer H G J (1955) Chem Phys 23:2252CrossRefGoogle Scholar
  9. 9.
    Hoffman J D, Zimm B H (1955) J Polymer Sci 15:405CrossRefGoogle Scholar
  10. 10.
    Whitmore F C (1960) J Appl Phys 31:1858CrossRefGoogle Scholar
  11. 11.
    Meyerhoff G, Nachtigall K (1962) J Polymer Sci 57:227CrossRefGoogle Scholar
  12. 12.
    Nachtigall K, Meyerhoff G (1959) Makromol Chemie 33:85CrossRefGoogle Scholar
  13. 13.
    Giglio M, Vendramini A (1977) Phys Rev Lett 38:26CrossRefGoogle Scholar
  14. 14.
    Giglio M, Vendramini A (1975) Phys Rev Lett 34:561CrossRefGoogle Scholar
  15. 15.
    Kolodner P, Williams H, Moe C (1988) J Chem Phys 88:6512CrossRefGoogle Scholar
  16. 16.
    Zhang K J, Briggs M E, Gammon R W, Sengers J V (1996) J Chem Phys 104:6881CrossRefGoogle Scholar
  17. 17.
    Giddings J C, Caldwell K D, Myers M N (1976) Macromolecules 9:106CrossRefGoogle Scholar
  18. 18.
    Giddings J C, Hovingh M E, Thompson G H (1970) J Phys Chem 74:4291CrossRefGoogle Scholar
  19. 19.
    Giddings J C, Caldwell K D, Myers M N (1976) Macromolecules 9:106CrossRefGoogle Scholar
  20. 20.
    Brimhall S L, Myers M N, Caldwell K D, Giddings J C (1985) J Polym Sci Polym Phys 23:2443CrossRefGoogle Scholar
  21. 21.
    Schimpf M E, Giddings J C (1989) J Polym Sci Polym Phys B27:1317CrossRefGoogle Scholar
  22. 22.
    Venema E, de Leeuw P, Kraak J C, Poppe H, Tijssen R (1997) J. Chromatogr. A, 765:135CrossRefGoogle Scholar
  23. 23.
    Schimpf M E, Giddings J C (1990) J Polym Sci Polym Phys B28:2673CrossRefGoogle Scholar
  24. 24.
    M. Antonietti, A. Briel, and C. Tank. Acta Polymer., 46:254, (1995)CrossRefGoogle Scholar
  25. 25.
    Kirkland J J, Rementer S W, Yau W W (1989) J Appl Polymer Sci 38:1383CrossRefGoogle Scholar
  26. 26.
    Li W B, private communicationGoogle Scholar
  27. 27.
    Thyagarajan K, Lallemand P (1978) Opt Commun 26:54CrossRefGoogle Scholar
  28. 28.
    Köhler W (1993) J Chem Phys 98:660CrossRefGoogle Scholar
  29. 29.
    Wesson JA, Noh I, Kitano T, Yu H (1984) Macromolecules, 17:782CrossRefGoogle Scholar
  30. 30.
    Sillescu H (1988) Makromol Chem Makromol Symp 18:135Google Scholar
  31. 31.
    Hervet H, Leger L, Rondelez F (1979) Phys Rev Lett 42:1681CrossRefGoogle Scholar
  32. 32.
    Rondelez F (1980) In: Degiorgio V, Corti M, Giglio M editors Light scattering in liquids and macromolecular solutions Plenum PubCorp New York p 243Google Scholar
  33. 33.
    Pohl D W, Schwarz S E, Irniger V (1973) Phys Rev Lett 31:32CrossRefGoogle Scholar
  34. 34.
    Köhler W, Rossmanith P (1995) J Phys Chem 99:5838CrossRefGoogle Scholar
  35. 35.
    Köhler W, Rossmanith P (1995) Int J Polym Analysis and Characterization 1:49CrossRefGoogle Scholar
  36. 36.
    Köhler W, Rosenauer C, Rossmanith P (1995) Int J Thermophys 16:11CrossRefGoogle Scholar
  37. 37.
    Rosenauer, Köhler W (1996) Macromolecules 29:3203CrossRefGoogle Scholar
  38. 38.
    Johnson Jr C S (1985) J Opt Soc B 2:317CrossRefGoogle Scholar
  39. 39.
    Eichler H J, Guenther P, Pohl D W(1986) Laser-induced dynamic gratings Springer Berlin Heidelberg New YorkGoogle Scholar
  40. 40.
    Späth H (1973) Algorithmen für multivariable Ausgleichsmodelle Oldenburg MünchenGoogle Scholar
  41. 41.
    Holleman A F, Wiberg E (1971) Lehrbuch der anorganischen Chemie de Gruyter BerlinGoogle Scholar
  42. 42.
    Spill R, unpublishedGoogle Scholar
  43. 43.
    Becker A, Köhler W, Müller B (1995) Ber Bunsenges Phys Chem 99:600Google Scholar
  44. 44.
    Allain C, Lallemand P (1977) C R Acad Sc Paris Ser B 285:187Google Scholar
  45. 45.
    Bloisi F, Vicari L, Cavaliere P, Martellucci S, Quartieri J, Mormile P, Pierattini G (1987) Appl Phys B44:103CrossRefGoogle Scholar
  46. 46.
    Pohl DW (1980) Phys Rev 77A:53Google Scholar
  47. 47.
    Nagasaka Y, Hatakeyama T, Okuda M, Nagashima A (1988) Rev Sci Instrum 59(7):1156CrossRefGoogle Scholar
  48. 48.
    Kogelnik H (1969) Bell System Tech J48:2909Google Scholar
  49. 49.
    Köhler W, Müller B (1995) J Chem Phys 103:4367CrossRefGoogle Scholar
  50. 50.
    Li W B, Segre P N, Gammon R W, Sengers J V (1994) Physica A 204:399CrossRefGoogle Scholar
  51. 51.
    Bou-Ali M M, Ecenarro O, Madariaga J A, Santamaria C M, Valencia J J (1998) J Phys Condens Matter 10:3321CrossRefGoogle Scholar
  52. 52.
    Köhler W, Müller-Plathe F, Reith D UnpublishedGoogle Scholar
  53. 53.
    Provencher S W (1982) Computer Phys Commun 27:213CrossRefGoogle Scholar
  54. 54.
    Provencher S W (1982) Computer Phys Commun 27:229CrossRefGoogle Scholar
  55. 55.
    Koppel D E (1972) J Chem Phys 57:4814CrossRefGoogle Scholar
  56. 56.
    Chu B (1991) Laser Light Scattering Academic Press New YorkGoogle Scholar
  57. 57.
    Provencher S W (1979) Makromol Chem 180:201CrossRefGoogle Scholar
  58. 58.
    Honerkamp J, Maier D, Weese J (1993) J Chem Phys 98:865CrossRefGoogle Scholar
  59. 59.
    Schnablegger H, Glatter O (1991) Appl Opt 30:4889Google Scholar
  60. 60.
    Glatter O, Sieberer J, Schnablegger H (1991) Part Part Syst Charact 8:274CrossRefGoogle Scholar
  61. 61.
    Stock R S, Ray W H (1985) J Polym Sci Polym Phys 23:1393CrossRefGoogle Scholar
  62. 62.
    King T A, Treadaway M F (1977) J Chem Soc Faraday Trans 73:1616CrossRefGoogle Scholar
  63. 63.
    Stölken S, Bartsch E, Sillescu H, Lindner P (1995) Prog Coll Polym Sci 98:155CrossRefGoogle Scholar
  64. 64.
    Köhler W, Schäfer R, Bartsch E, Stoelken S (1997) Progr Colloid Polym Sci 104:132CrossRefGoogle Scholar
  65. 65.
    Bartsch E, Frenz V, Sillescu H (1994) J Noncryst Solids 172:88CrossRefGoogle Scholar
  66. 66.
    Stölken S, Bartsch E, Sillescu H, Lindner P (1995) Prog Coll Polym Sci 98:155CrossRefGoogle Scholar
  67. 67.
    Renth F, Bartsch E, Kasper A, Kirsch S, Stölken S, Sillescu H, Köhler W, Schäfer R (1996) Progr Colloid Polym Sci 100:127CrossRefGoogle Scholar
  68. 68.
    Medina-Noyola M (1988) Phys Rev Lett 60:2705CrossRefGoogle Scholar
  69. 69.
    Kops-Werkhoven M M, Fijnaut H M (1981) J Chem Phys 74:1618CrossRefGoogle Scholar
  70. 70.
    van Megen W, Ottewill R H, Owens S M (1985) J Chem Phys 82:508CrossRefGoogle Scholar
  71. 71.
    M M Kops-Werkhoven and H M Fijnaut (1981) J. Chem. Phys., 77:2242CrossRefGoogle Scholar
  72. 72.
    Beenakker C W J, Mazur P (1984) Physica A 126:349CrossRefGoogle Scholar
  73. 73.
    Bloisi F Opt (1988) Commun 68:87Google Scholar
  74. 74.
    Schäfer R (1997) PhD thesis, MainzGoogle Scholar
  75. 75.
    Schäfer R, Becker A, Köhler W (1998) Int J Thermophys 20:1 (1999)CrossRefGoogle Scholar
  76. 76.
    Stearns S D (1987) Digitale Verarbeitung analoger Signale Oldenburg MünchenGoogle Scholar
  77. 77.
    Ziessow D (1973) On-line Rechner in der Chemie de Gruyter BerlinGoogle Scholar
  78. 78.
    Ziessow D, Blümich B (1974) Ber Bunsenges Phys Chem 78:1168Google Scholar
  79. 79.
    Kirkpatrick S, Gelatt C D, Vecchi M P (1983) Science, 220:671CrossRefGoogle Scholar
  80. 80.
    Stark H (1987) Image recovery theory and application Academic PressGoogle Scholar
  81. 81.
    S Stearns (1987) Digitale Verarbeitung analoger Signale Oldenburg MünchenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • W. Köhler
    • 1
  • R. Schäfer
    • 2
  1. 1.Physikalisches InstitutUniversität BayreuthBayreuthGermany
  2. 2.Max-Planck-Institut für PolymerforschungMainzGermany

Personalised recommendations