Advertisement

Reasoning about Algebraic Generalisation of Petri Nets

  • Gabriel Juhás
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1639)

Abstract

In this paper we study properties of an abstract and (as we hope) a uniform frame for Petri net models, which enables us to generalise algebra as well as enabling rule of Petri nets. Our approach of such a frame is based on using partial groupoids in Petri nets. Properties of Petri nets constructed in this manner are investigated through related labelled transition systems. In particular, we investigate the relationships between properties of partial groupoids used in Petri nets and properties of transition systems crucial for the existence of the state equation and linear algebraic techniques. We show that partial groupoids embeddable into Abelian groups play an important role in preserving these properties.

Keywords

Abelian Group Transition System Label Transition System Partial Algebra Commutative Monoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Adámek. Theory of Mathematical Structures. Kluwer, Dordrecht, 1983.zbMATHGoogle Scholar
  2. 2.
    E. Badouel. Representation of Reversible Automata and State Graphs of Vector Addition Systems. Technical Report, INRIA Rennes, 1998.Google Scholar
  3. 3.
    J. Le Bail, H. Alla, and R. David. Hybrid Petri nets. In Proceedings of 1st European Control Conference, pp. 1472–1477, Grenoble, 1991.Google Scholar
  4. 4.
    P. Braun. Ein allgemeines Petri-netz. Master’s thesis, Univ. of Frankfurt, 1992.Google Scholar
  5. 5.
    P. Braun, B. Brosowski, T. Fischer, and S. Helbig. A group theoretical approach to general Petri nets. Technical report, Univ. of Frankfurt, 1989-1991.Google Scholar
  6. 6.
    A. H. Clifford and G. B. Preston. The Algebraic Theory of Semigroups I, II. American Mathematical Society, 1961, 1967.Google Scholar
  7. 7.
    R. David and H. Alla. Continuous Petri nets. In Proc. of 8th European Workshop on Application and Theory of Petri nets, pp. 275–294, Zaragoza, 1987.Google Scholar
  8. 8.
    A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures, part II: State spaces of concurrent systems. Acta Informatika, 27:343–368, 1990.zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    H. Ehrig, J. Padberg, and G. Rozenberg. Behaviour and realization construction for Petri nets based on free monoid and power set graphs. In Workshop on Concurrency, Specification & Programming. Humboldt University, 1994.Google Scholar
  10. 10.
    Xudong He. A formal definition of hierarchical predicate transition nets. In Proc. ICATPN’96, LNCS 1091, pp. 212–229, 1996.Google Scholar
  11. 11.
    L. E. Holloway, B. H. Krogh, and A. Giua. A survey of net methods for controlled discrete event systems. Discrete Event Dynamic Systems, 7:151–190, 1997.zbMATHCrossRefGoogle Scholar
  12. 12.
    H. J. Hoogeboom and G. Rozenberg. Diamond properties of elementary net systems. Fundamenta Informaticae, XIV:287–300, 1991.MathSciNetGoogle Scholar
  13. 13.
    R. Janicki and M. Koutny. Invariant semantics of nets with inhibitor arcs. In Proc. CONCUR’91, LNCS 527, 1991.Google Scholar
  14. 14.
    K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use I II III. Springer-Verlag, Berlin, 1992, 1995, 1997.Google Scholar
  15. 15.
    K. Jensen and G. Rozenberg, editors. High-Level Petri-Nets, Theory and Applications. Springer-Verlag, Berlin, 1991.Google Scholar
  16. 16.
    G. Juhás. Algebraically Generalised Petri Nets. PhD thesis, Institute of Control Theory and Robotics, Slovak Academy of Sciences, 1998.Google Scholar
  17. 17.
    G. Juhás. The essence of Petri nets and transition systems through Abelian groups. Electronic Notes in Theoretical Computer Science, 18, 1998.Google Scholar
  18. 18.
    R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and System Sciences, 3(2):147–195, 1969.zbMATHMathSciNetGoogle Scholar
  19. 19.
    R. M. Keller. Formal verification of parallel programs. Communications of the ACM, 7(19):371–384, 1976.CrossRefGoogle Scholar
  20. 20.
    E. S. Ljapin and A. E. Evseev. Partial algebraic operations. Izdatelstvo “Obrazovani”, St. Petersburg, 1991. In Russian.Google Scholar
  21. 21.
    J. Meseguer and U. Montanari. Petri nets are monoids. Information and Computation, 88(2):105–155, October 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32(6):545–596, 1995.zbMATHMathSciNetGoogle Scholar
  23. 23.
    M. Mukund. Petri nets and step transition systems. International Journal of Foundations of Computer Science, 3(4):443–478, December 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    M. Nielsen, G. Rozenberg, and P. S. Thiagarajan. Elementary transition systems. Theoretical Computer Science, 96:3–33, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    J. Padberg. Abstract Petri Nets: Uniform Approach and Rule-Based Refinement. PhD thesis, Technical University of Berlin, 1996.Google Scholar
  26. 26.
    J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.Google Scholar
  27. 27.
    C. A. Petri. Kommunikation mit Automaten. PhD thesis, Univ. Bonn, 1962.Google Scholar
  28. 28.
    G. Rozenberg. Behaviour of elementary net systems. In Proc. 2nd Advanced Course in Petri Nets, Advances in Petri Nets 1986, LNCS 254, pp. 60–94,1987.Google Scholar
  29. 29.
    P. S. Thiagarajan. Elementary net systems. In Proc. 2nd Advanced Course in Petri Nets, Advances in Petri Nets 1986, LNCS 254, pp. 26–59, 1987.Google Scholar
  30. 30.
    P. Tix. One FIFO place realizes zero-testing and Turing machines. Petri net Newsletter, 51, 12 1996.Google Scholar
  31. 31.
    G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 4, pp. 1–148. Oxford University Press, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Gabriel Juhás
    • 1
  1. 1.Technical University of BerlinBerlinGermany

Personalised recommendations