Trace Channel Nets

  • Jean Fanchon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1639)


We present a new class of nets which includes and extends both Coloured Nets and Fifo Nets by defining weights on edges and markings of places as traces on a concurrent (trace) alphabet. Considering different independence relations on the alphabet, from the maximal one to the empty one (yielding words), Trace Channel Nets open a hierarchy of semantics on a single net structure. Furthermore a field of investigation results from the relationship between the independence on the alphabet and the behaviours of the net. In particular we show that the boundedness of a TCNet is related to particular independence relations, maximal w.r.t. boundedness, that TCNets can be applied to the study of Communicating Finite State Machines (using communication through a trace channel), and that they define a hierarchy of partial order semantics for Nets.


Mazurkiewicz traces Fifo Nets Coloured Nets concurrency asynchronous communication concurrent automata recognisability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ACC.
    Amer. P, Chassot. C, Conolly. T. J,Diaz. M., Conrad. P. Partial-order transport service for multimedia and other applications. IEEE/ACM Transactions on Networking, Vol.2, N5, 440–456, October 1994CrossRefGoogle Scholar
  2. BD.
    Best. E, Devillers. R. Sequential and concurrent behaviour in Petri Nets theory. Theoretical Computer Science 55 (1987), 87–136.zbMATHCrossRefMathSciNetGoogle Scholar
  3. BDK.
    Bracho. P, Droste. M, Kuske. D. Representation of computations in concurrent automata by dependence orders. Theoretical Computer Science 174 (1997) 67–96.zbMATHCrossRefMathSciNetGoogle Scholar
  4. BC.
    Boudol. G, Castellani. I. On the semantics of concurrency:partial orders and transition systems. Lecture Notes in Computer Science, Vol. 249; CAAP 1987, 123–137. Springer-Verlag, 1987.Google Scholar
  5. BG.
    Benalycherif. M, Girault. C. Behavioural and Structural Composition Rules Preserving Liveness by Synchronisation for Coloured FiFo Nets. Lecture Notes in Computer Science, Vol 1091; ICATPN 96, 73–92. Springer-Verlag, 1996.Google Scholar
  6. CDL.
    Chassot. C. DDiaz. M, Lozes. A. From the partial order concept to partial order multimedia connections. Journal of High Speed Networks, vol. 5, n. 2, 1996.Google Scholar
  7. CFP.
    Cece. G, Finkel. A, Purushotaman. S.Unreliable channels are easier to verify than perfect channels. Information and computation, vol.124 (1),20–31,1996.zbMATHCrossRefMathSciNetGoogle Scholar
  8. Dr.
    Droste. M. Recognizable languages in concurrency monoids. Theoretical Computer Science 150 (1995), 77–109.zbMATHCrossRefMathSciNetGoogle Scholar
  9. DK.
    Droste. M, Kuske. D. Automata with concurrency relations, a survey. Workshop on Algebraic and Syntactic Aspects of Concurrency.P. Gastin and A. Petit eds. LITP 95/48,1995.Google Scholar
  10. DGP.
    Diekert. V, Gastin. P, Petit. A. Rational and recognizable complex trace languages. Information and Computation 116, 134–153, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  11. F1.
    Fanchon. J. A Fifo-net model for processes with asynchronous communication. Lecture Notes in Computer Science, Vol. 609; Advances in Petri Nets 1992, 152–178. Springer-Verlag, 1992.Google Scholar
  12. F2.
    Fanchon. J.Trace Channel Nets.LAAS report 98463,November 1998.Google Scholar
  13. FB.
    Fanchon. J, Boyer. M. Partial Order and Trace Channel Nets.LAAS report 98158, May 1998.Google Scholar
  14. FM.
    Finkel. A, Memmi. G. Fifo Nets: A New Model of Parallel Computation. Lecture Notes in Computer Science, Vol. 145: 111–121. Springer-Verlag, 1982.Google Scholar
  15. GPZ.
    Gastin. P, Petit. A, Zielonka. W. An extention of Kleene’s and Ochmanski’s theorems to infinite traces. Theoretical Computer Science 125 (1991), 167–204.CrossRefMathSciNetGoogle Scholar
  16. Gi.
    Gischer. J. The equational theory of pomsets. Theoretical Computer Science 61 (1988) 199–224.CrossRefMathSciNetzbMATHGoogle Scholar
  17. Gr.
    Grabowski. J. On partial Languages. Fundamenta Informaticae IV.2. (1981).Google Scholar
  18. Je.
    Jensen. K. Coloured Petri Nets. Monographs in Theoretical Computer Science. Springer Verlag, 1995.Google Scholar
  19. K1.
    Kiehn. A. Comparing locality and causality based equivalences. Acta Informatica 31, 697–718, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  20. K2.
    Kiehn. A. Observing Partial Order Runs of Petri Nets. Lecture Notes in Computer Science, Vol 1337, Foundations of Computer Science, Springer-Verlag 1998.Google Scholar
  21. LW.
    Lodaya. K, Weil. P. Series-parallel pomsets:Algebra, Automata and Languages. STACS 98, Lecture Notes in Computer Science, Vol. 1373, Springer-Verlag 1998.CrossRefGoogle Scholar
  22. Ma.
    Mazurkiewicz. A. Basic notions of trace theory. Lecture Notes in Computer Science, Vol. 354: 285–363. Springer Verlag, 1989.Google Scholar
  23. NSW.
    Nielsen. M, Sassone. V, Winskel. G.Relationships between models of concurrency. Lecture Notes in Computer Science, Vol. 803, 425–476. Springer-Verlag 1993.Google Scholar
  24. Oc.
    Ochmanski. E. Regular behaviour of concurrent systems. Bulletin of the European Association for Theoretical Computer Science n.27 (1985),56–67.Google Scholar
  25. Pr.
    Pratt. W. Modeling concurrency with partial orders. Int.J.Parallel Programming 15 (1987) 33–71.CrossRefMathSciNetGoogle Scholar
  26. Vo.
    Vogler. W. Modular Construction and Partial Order Semantics of Petri Nets. Lecture Notes in Computer Science, Vol. 625. Springer-Verlag, 1992Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Jean Fanchon
    • 1
  1. 1.LAAS du CRNSToulouseFrance

Personalised recommendations