Advertisement

Continuous Time Dynamic PET Imaging Using List Mode Data

  • Thomas E. Nichols
  • Jinyi Qi
  • Richard M. Leahy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1613)

Abstract

We describe a method for computing a continuous time estimate of dynamic changes in tracer density using list mode PET data. The tracer density in each voxel is modeled as an inhomogeneous Poisson process whose rate function can be represented using a cubic B-spline basis. An estimate of these rate functions is obtained by maximizing the likelihood of the arrival times of each detected photon pair over the control vertices of the spline. By resorting the list mode data into a standard sinogram plus a “timogram” that retains the arrival times of each of the events, we are able to perform efficient computation that exploits the symmetry inherent in the ordered sinogram. The maximum likelihood estimator uses quadratic temporal and spatial smoothness penalties and an additional penalty term to enforce non-negativity. Corrections for scatter and randoms are described and the results of studies using simulated and human data are included.

Keywords

Rate Function Mean Square Error Instantaneous Rate Spline Estimate Spline Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett, H.H., White, T., Parra, L.C.: List-mode likelihood. Journal of the Optical Society of America, 14 (1997) 2914–2923CrossRefGoogle Scholar
  2. 2.
    Bartels, R.H., Beatty, J.C., Barsky, B.A.: An introduction to splines for use in computer graphics and geometric modeling. M. Kaufmann Publishers, Los Altos, CA (1986)Google Scholar
  3. 3.
    de Boor, C.: A Practical Guide to Splines. Vol. 27 of Applied Mathematical Sciences. Springer-Verlag, New York (1978)MATHGoogle Scholar
  4. 4.
    Fessler, J.A.: Penalized weighted least-squares image reconstruction for PET. IEEE Transactions on Medical Imaging 13 (1994) 290–300CrossRefGoogle Scholar
  5. 5.
    Geman, S., McClure, D.E.: Statistical methods for tomographic image reconstruction. In Proceedings of The 46th Session of The ISI, Bulletin of The ISI 52 (1987)Google Scholar
  6. 6.
    Gu, C., Qiu, C.: Smoothing spline density estimation: Theory. The Annals of Statistics 21 (1993) 217–234MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Herscovitch, P., Markham, J., Raichle, M.E.: Brain blood flow measured with intravenious H2 15O. I. Theory and error analysis. Journal of Nuclear Medicine 24 (1983) 782–789Google Scholar
  8. 8.
    Huang, S.C., Phelps, M.E.: Principles of Tracer Kinetic Modeling in Posistron Emission Tomography and Autoradiography. In: Positron Emission Tomography and Autoradiography. Principles and Applications for the Brain and Heart. Raven Press, New York (1986)Google Scholar
  9. 9.
    Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proceedings of the Institute of Radio Engineers 40 (1952) 1098–1101Google Scholar
  10. 10.
    Johnson, C., Yan, Y., Carson, R., Martino, R., Daube-Witherspoon, M.: A system for the 3D reconstruction of retracted-septa PET data using the EM algorithm. IEEE Transactions on Nuclear Science 42 (1995) 1223–1227Google Scholar
  11. 11.
    Kaufman, L.: Maximum likelihood, least squares, and penalized least squares for PET. IEEE Transactions on Medical Imaging 12 (1993) 200–214CrossRefGoogle Scholar
  12. 12.
    Lee, S.-J., Rangarajan, A., Gindi, G.: Bayesian image reconstruction in SPECT using higher order mechanical models as priors. IEEE Transactions on Medical Imaging 14 (1995) 669–680CrossRefGoogle Scholar
  13. 13.
    Luenberger, D.: Linear and nonlinear programming. Addison-Wesley, Reading, Mass (1989)Google Scholar
  14. 14.
    Matthews, J., Bailey, D., Price, P., Cunningham, V.: The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction. Physics in Medicine and Biology 42 (1997) 1155–1173CrossRefGoogle Scholar
  15. 15.
    Mumcuoglu, E.U., Leahy, R., Cherry, S.R., Zhou, Z.: Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images. IEEE Transactions on Medical Imaging 13 (1994) 687–701CrossRefGoogle Scholar
  16. 16.
    Ollinger, J.M.: Algorithms for parameter estimation in dynamic tracer studies using postiron emission tomography. PhD thesis, Washington University School of Medicine, St. Louis, MO (1986)Google Scholar
  17. 17.
    O’Sullivan, F. Image radiotracer model parameters in PET: A mixture analysis approach. IEEE Transactions on Medical Imaging 12 (1993) 399–412CrossRefGoogle Scholar
  18. 18.
    Parra, L., Barrett, H.H.: List-mode likelihood: EM algorithm and image quality estimation demonstrated on 2D PET. IEEE Transactions on Medical Imaging 17 (1998) 228–235CrossRefGoogle Scholar
  19. 19.
    Qi, J., Leahy, R.M., Cherry, S.R., Chatziioannou, A., Farquhar, T.H.: High resolution 3D bayesian image reconstruction using the microPET small animal scanner. Physics in Medicine and Biology 43 (1998) 1001–1013CrossRefGoogle Scholar
  20. 20.
    Qi, J., Leahy, R.M., Hsu, C., Farquhar, T.H., Cherry, S.R.: Fully 3D Bayesian image reconstruction for ECAT EXACT HR+. IEEE Transactions on Nuclear Science 45 (1998) 1096–1103CrossRefGoogle Scholar
  21. 21.
    Snyder, D.: Parameter estimation for dynamic studies in emission-tomography systems having list-mode data. IEEE Transactions on Nuclear Science 31 (1984) 925–931CrossRefGoogle Scholar
  22. 22.
    Snyder, D., Miller, M.: Random Point processes in time and space, 2nd edition. Springer-Verlag, New York (1991)MATHGoogle Scholar
  23. 23.
    Snyder, D.L.: Utilizing side information in emission tomography. IEEE Transactions on Nuclear Science 31 (1984) 533–537CrossRefGoogle Scholar
  24. 24.
    Wahba, G.: Interpolating spline methods for density estimation. I: Equi-spaced knots. The Annals of Statistics 3 (1975) 30–48MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Watson, C.C., Newport, D., Casey, M.E., deKemp, R.A., Beanlands, R.S., Schmand, M.: Evaluation of simulation based scatter correction for 3D PET cardiac imaging. IEEE Transactions on Nuclear Science 44 (1997) 90–97CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Thomas E. Nichols
    • 1
  • Jinyi Qi
    • 2
  • Richard M. Leahy
    • 2
  1. 1.Department of StatisticsCarnegie Mellon UniversityPittsburghUSA
  2. 2.Signal & Image Processing InstituteUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations