Registration of Cortical Anatomical Structures via Robust 3D Point Matching

  • Haili Chui
  • James Rambo
  • James Duncan
  • Robert Schultz
  • Anand Rangarajan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1613)


Inter-subject non-rigid registration of cortical anatomical structures as seen in MR is a challenging problem. The variability of the sulcal and gyral patterns across patients makes the task of registration especially difficult regardless of whether voxel- or feature-based techniques are used. In this paper, we present an approach to matching sulcal point features interactively extracted by neuroanatomical experts. The robust point matching (RPM) algorithm is used to find the optimal affine transformations for matching sulcal points. A 3D linearly interpolated non-rigid warping is then generated for the original image volume. We present quantitative and visual comparisons between Talairach, mutual information-based volumetric matching and RPM on five subjects’ MR images.


Iterate Close Point Landmark Point Probabilistic Atlas Correspondence Matrix Gyral Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Besl, P.J. and McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Patt. Anal. Mach. Intell. 14(2) (1992) 239–256CrossRefGoogle Scholar
  2. 2.
    Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Patt. Anal. Mach. Intell. 11(6) (1989) 567–585MATHCrossRefGoogle Scholar
  3. 3.
    Borgefors, G.: Hierarchical chamfer matching: a parametric edge matching algorithm. IEEE Trans. Patt. Anal. Mach. Intell. 10(6) (1988) 849–865CrossRefGoogle Scholar
  4. 4.
    Christensen, G., Joshi, S., Miller, M.: Volumetric transformation of brain anatomy. IEEE Trans. Med. Imag. 16(6) (1997) 864–877CrossRefGoogle Scholar
  5. 5.
    Collins, D., Goualher, G., Evans, A.: Non-linear cerebral registration with sulcal constraints. Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science volume 1496 (1988) 974–984CrossRefGoogle Scholar
  6. 6.
    Collins, D., Holmes, C., Peters, T., Evans, A.: Automatic 3D model-based neuro-anatomical segmentation. Human Brain Mapping 3(3) (1995) 190–208CrossRefGoogle Scholar
  7. 7.
    Cootes, T., Taylor, C., Cooper, D., and Graham, J.: Active shape models: Their training and application. Computer Vision and Image Understanding 61(1) (1995) 38–59CrossRefGoogle Scholar
  8. 8.
    Davatzikos, C.: Spatial transformation and registration of brain images using elastically deformable models. Computer Vision and Image Understanding: Special Issue on Medical Imaging 6(2) (1997) 207–222CrossRefGoogle Scholar
  9. 9.
    Feldmar, J., Ayache, N.: Rigid, affine and locally affine registration of free-form surfaces. Intl. J. Computer Vision 18(2) (1996) 99–119CrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. Freeman, W.H., San Francisco, CA (1979)MATHGoogle Scholar
  11. 11.
    Gold S., Rangarajan A., Lu, C.P., Pappu, S., Mjolsness, E.: New algorithms for 2-D and 3-D point matching: pose estimation and correspondence. Pattern Recognition 31(8) (1998) 1019–1031CrossRefGoogle Scholar
  12. 12.
    Goodall, C.: Procrustes methods in the statistical analysis of shape. J. R. Statist. Soc. B 53(2) (1991) 285–339MATHMathSciNetGoogle Scholar
  13. 13.
    Lohmann, G., von Cramon D.: Sulcal basin and sulcal strings as new concepts for describing the human cortical topography. Workshop on Biomedical Image Analysis, IEEE Press (1998) 41–54Google Scholar
  14. 14.
    Luenberger, D.: Linear and Nonlinear Programming. Addison-Wesley, Reading, MA (1984)MATHGoogle Scholar
  15. 15.
    Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J.: A probabilistic atlas of the human brain: theory and rationale for its development. NeuroImage 2(2) (1995) 89–101CrossRefGoogle Scholar
  16. 16.
    Pappu, S., Gold, S., Rangarajan, A.: A framework for non-rigid matching and correspondence. Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA 8 (1996) 795–801Google Scholar
  17. 17.
    Rambo, J., Zeng, X., Schultz, R., Win, L., Staib, L., Duncan, J.: Platform for visualization and measurement of gray matter volume and surface area within discrete cortical regions from MR images. NeuroImage 7(4) (1998) 795Google Scholar
  18. 18.
    Rangarajan, A., Chui, H., Bookstein, F.: The softassign Procrustes matching algorithm. Information Processing in Medical Imaging (IPMI’ 97), Springer (1997) 29–42Google Scholar
  19. 19.
    Rangarajan, A., Chui, H., Duncan, J.: Rigid point feature registration using mutual information. Medical Image Analysis (1999) (accepted).Google Scholar
  20. 20.
    Rangarajan, A., Chui, H., Mjolsness, E., Pappu, S., Davachi, L., Goldman-Rakic, P., Duncan, J.: A robust point matching algorithm for autoradiograph alignment. Medical Image Analysis 4(1) (1997) 379–398CrossRefGoogle Scholar
  21. 21.
    Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood and the EM algorithm. SIAM Review 26(2) (1984) 195–239MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Sandor, S., Leahy, R.: Surface based labeling of cortical anatomy using a deformable atlas. IEEE Trans. Med. Imag. 16(1) (1997) 41–54CrossRefGoogle Scholar
  23. 23.
    Studholme, C., Hill, D., Hawkes, D.: An overlap invariant entropy measure of 3d medical image alignment. Pattern Recognition 32 (1999) 71–86CrossRefGoogle Scholar
  24. 24.
    Thompson, P., Toga, A.W.: A surface-based technique for warping three-dimensional images of the brain. IEEE Trans. Med. Imag. 5(4) (1996) 402–417CrossRefGoogle Scholar
  25. 25.
    Toga, A., Mazziotta, J.: Brain Mapping: The Methods. Academic Press (1996)Google Scholar
  26. 26.
    Vaillant, M., Davatzikos, C., Bryan, R.: Finding 3D parametric representations of the deep cortical folds. Proc. of the Workshop on Mathematical Methods in Biomedical Image Analysis, IEEE Computer Society Press (1996) 151–159Google Scholar
  27. 27.
    Yuille, A.L.: Generalized deformable models, statistical physics, and matching problems. Neural Computation 2(1) (1990) 1–24CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Haili Chui
    • 1
  • James Rambo
    • 1
  • James Duncan
    • 1
  • Robert Schultz
    • 1
  • Anand Rangarajan
    • 1
  1. 1.Departments of Diagnostic Radiology, Electrical Engineering and Yale Child Study CenterYale UniversityNew HavenUSA

Personalised recommendations