Analytical Study of Bioelasticity Ultrasound Systems

  • Michael F. Insana
  • Larry T. Cook
  • Pawan Chaturvedi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1613)


A framework is presented for designing and evaluating bioelasticity imaging systems.


Magnetic Resonance Elastography Strain Image Manual Palpation Strain Error Elasticity Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sarvazyan, A., Skovoroda, A., Emelianov, S., Fowlkes, J., Pipe, J., Adler, R., Buxton, R., Carson, P.L.: Biophysical bases of elasticity imaging. In Acoustical Imaging 21 (1995) 223–240 New York: Plenum PressGoogle Scholar
  2. 2.
    Lerner, R., Huang, S., Parker, K.: Sonoelasticity images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med. Biol. 16 (1990) 231–239CrossRefGoogle Scholar
  3. 3.
    Céspedes, I., Ophir, J., Ponnekanti, H., Yazdi, Y., Li, X.: Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrasonic Imaging 15 (1993) 73–88CrossRefGoogle Scholar
  4. 4.
    O’Donnell, M., Skovoroda, A., Shapo, B., Emelianov, S.: Internal displacement and strain imaging using ultrasonic speckle tracking. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 41 (1994) 314–325CrossRefGoogle Scholar
  5. 5.
    Muthupillai, R., Lomas, D., Rossman, P., Greenleaf, J., Manduca, A., Ehman, R.: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269 (1995) 1854–1857CrossRefGoogle Scholar
  6. 6.
    Chaturvedi, P., Insana, M.F., Hall, T.J.: 2-D companding for noise reduction in strain imaging. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 45 (1998) 179–191CrossRefGoogle Scholar
  7. 7.
    Chaturvedi, P., Insana, M.F., Hall, T.J.: Testing the limitations of 2-D companding for strain imaging using phantoms. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 45 (1998) 1022–1031CrossRefGoogle Scholar
  8. 8.
    Insana, M.F., Chaturvedi, P., Hall, T.J., Bilgen, M.: 3-D companding using linear arrays for improved strain imaging. Proc. IEEE Ultrason. Symp. 97CH36118 (1997) 1435–1438Google Scholar
  9. 9.
    Carter, G.C.: Coherence and Time Delay Estimation. Piscataway, NJ: IEEE Press (1993)Google Scholar
  10. 10.
    Barrett, H.H., Gifford, H.: Cone-beam tomography with discrete data sets. Phys. Med. Biol. 39 (1994) 451–476CrossRefGoogle Scholar
  11. 11.
    Insana, M.F., Cook, L.T., Bilgen, M., Chaturvedi, P.: Maximum-likelihood approach to strain imaging using ultrasound. J. Acoust. Soc. Am. (1999) (submitted)Google Scholar
  12. 12.
    Wolberg, G.: Digital Image Warping. Los Alamitos, CA: IEEE Computer Society Press (1990)Google Scholar
  13. 13.
    Fung, Y.: A First Course in Continuum Mechanics. Englewood Cliffs: Prentice Hall 3/e (1994)Google Scholar
  14. 14.
    Maurice, R.L., Bertrand, M.: Lagrangian speckle model and tissue motion estimation — theory. IEEE Trans. Med. Imag. (1999) (submitted)Google Scholar
  15. 15.
    Yeung, F., Levinson, S.F., Fu, D., Parker, K.J.: Feature-adaptive motion tracking of ultrasound image sequences using a deformable mesh. IEEE Trans. Med. Imag. (1999) (in press)Google Scholar
  16. 16.
    Zhu, Y., Chaturvedi, P., Insana, M.F.: Strain imaging with a deformable mesh. Ultrasonic Imaging (1999) (submitted)Google Scholar
  17. 17.
    Hall, T.J., Bilgen, M., Insana, M.F., Krouskop, T.A.: Phantom materials for elastography. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 44 (1997) 1355–1365CrossRefGoogle Scholar
  18. 18.
    Jin, Q., Wong, K.M., Luo, Z-Q.: The estimation of time delay and Doppler stretch of wideband signals. IEEE Trans. Sig. Proc. 43 (1995) 904–916CrossRefGoogle Scholar
  19. 19.
    Papoulis, A.: The Fourier Integral and its Applications. New York: McGraw-Hill (1962)MATHGoogle Scholar
  20. 20.
    Barrett, H.H., Denny, J.L, Wagner, R.F., Myers, K.J.: Objective assessment of image quality II: Fisher information, Fourier crosstalk and figures of merit for task performance. J. Opt. Soc. Am. A 12 (1995) 834–852CrossRefGoogle Scholar
  21. 21.
    Carter, G.C., Knapp, C.H., Nuttall, A.H.: Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing. IEEE Trans Audio and Electroacoustics 21 (1973) 337–344CrossRefGoogle Scholar
  22. 22.
    Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs, NJ: PTR Prentice Hall (1993) Chapters 7 and 15MATHGoogle Scholar
  23. 23.
    Knapp, C.H., Carter, G.C.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoust., Speech, Signal Processing 24 (1976) 320–327CrossRefGoogle Scholar
  24. 24.
    Barrett, H.H., Aarsvold, J.N., Roney, T.J.: Null functions and eigenfunctions: tools for the analysis of imaging systems. In Progress in Clinical and Biological Research 363 (1991) 211–226.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Michael F. Insana
    • 1
  • Larry T. Cook
    • 1
  • Pawan Chaturvedi
    • 1
  1. 1.Dept of RadiologyUniv of Kansas Med CenterKansas CityUSA

Personalised recommendations