Skip to main content

Calculation of structural parameters from hydrodynamic data

  • Conference paper
  • First Online:
Analytical Ultracentrifugation V

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 113))

Abstract

Biopolymers of simple overall shape (nonconjugated and conjugated proteins, viruses, ribonucleic acids) can be modeled by whole-body approaches, approximating their shape by prolate/ oblate ellipsoids of revolution or spheres. A sophisticated rearrangement of the theoretical formalism already applied for the prediction of hydrodynamic data from solution scattering or crystal data allows the inverse procedure, the prediction of structural parameters on the basis of hydrodynamic data. Sedimentation and diffusion coefficients, in addition to molar masses, partial specific volumes and values for hydration, are used to predict structural parameters typical of small-angle X-ray scattering studies (radii of gyration, volumes, surface-to-volume ratios and surface areas), together with estimates of axial ratios. For particles of simple shape such as globular proteins, fair agreement between observed and predicted values was achieved. Far-reaching conformity between experiments and calculations was also obtained for the prediction of subtle ligand-induced shape changes. A critical assessment of errors reveals the validity of anticipations of structural parameters from hydro-dynamic data. The accuracy to be obtained, however, turns out to be less than for the reverse procedure. Use of viscosity data for parameter predictions cannot be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perrin F (1934) J Phys Radium Série VII 5:497–511

    CAS  Google Scholar 

  2. Perrin F (1936) J Phys Radium Série VII 7:1–11

    CAS  Google Scholar 

  3. Simha R (1940) J Phys Chem 44:25–34

    Article  CAS  Google Scholar 

  4. Mehl JW, Oncley JL, Simha R (1940) Science 92:132–133

    Article  CAS  Google Scholar 

  5. Oncley JL (1941) Ann NY Acad Sci 41:121–150

    Article  CAS  Google Scholar 

  6. Saito N (1951) J Phys Soc Jpn 6:297–301

    Article  CAS  Google Scholar 

  7. Scheraga HA, Mandelkern L (1953) J Am Chem Soc 75:179–184

    Article  CAS  Google Scholar 

  8. Scheraga HA (1955) J Chem Phys 23:1526–1532

    Article  CAS  Google Scholar 

  9. Luzzati V, Witz J, Nicolaieff A (1961) J Mol Biol 3:367–378

    Article  CAS  Google Scholar 

  10. Luzzati V, Witz J, Nicolaieff A (1961) J Mol Biol 3:379–392

    CAS  Google Scholar 

  11. Slegers H, Clauwaert J, Fiers W (1973) Biopolymers 12:2033–2044

    Article  CAS  Google Scholar 

  12. Rowe AJ (1977) Biopolymers 16:2595–2611

    Article  CAS  Google Scholar 

  13. Squire PG, Himmel ME (1979) Arch Biochem Biophys 196:165–177

    Article  CAS  Google Scholar 

  14. Kumosinski TF, Pessen H (1982) Arch Biochem Biophys 219:89–100

    Article  CAS  Google Scholar 

  15. Harding SE, Rowe AJ (1982) Int J Biol Macromol 4:160–164

    Article  CAS  Google Scholar 

  16. Harding SE, Rowe AJ (1982) Int J Biol Macromol 4:357–361

    Article  CAS  Google Scholar 

  17. Harding SE, Rowe AJ (1983) Biopolymers 22:1813–1829 and Erratum (1984) 23:843

    Article  CAS  Google Scholar 

  18. Müller JJ, Damaschun H, Damaschun G, Gast K, Plietz P, Zirwer D (1984) Stud Biophys 102:171–175

    Google Scholar 

  19. Harding SE (1987) Biophys J 51:673–680

    CAS  Google Scholar 

  20. Harding SE, Cölfen H (1995) Anal Biochem 228:131–142

    Article  CAS  Google Scholar 

  21. Harding SE, Horton JC, Cölfen H (1997) Eur Biophys J 25:347–359

    Article  CAS  Google Scholar 

  22. Behlke J (1997) Eur Biophys J 25:319–323

    Article  CAS  Google Scholar 

  23. Harding SE, Horton JC, Winzor DJ (1998) Biochem Soc Trans 26:737–741

    CAS  Google Scholar 

  24. Tanford C (1961) Physical chemistry of macromolecules. Wiley, New York

    Google Scholar 

  25. Cantor CR, Schimmel PR (1980) Biop0hysical chemistry, parts I-III. Freeman, San Francisco

    Google Scholar 

  26. Garcia de la Torre J (1989) In: Harding SE, Rowe AJ (eds) Dynamic properties of biomolecular assemblies. Royal Society of Chemistry, Cambridge, UK, pp 3–31

    Google Scholar 

  27. García de la Torre J, Navarro S, Lopez Martinez MC, Diaz FG, Lopez Cascales JJ (1994) Biophys J 67:530–531

    Article  Google Scholar 

  28. Byron O (1997) Biophys J 72:408–415

    CAS  Google Scholar 

  29. Garcia de la Torre J, Carrasco B, Harding SE (1997) Eur Biophys J 25:361–372

    Article  Google Scholar 

  30. Spotorno B, Piccinini L, Tassara G, Ruggiero C, Nardini M, Molina F, Rocco M (1997) Eur Biophys J 25:373–384

    Article  CAS  Google Scholar 

  31. Zipper P, Durchschlag H (1997) Prog Colloid Polym Sci 107:58–71

    Article  CAS  Google Scholar 

  32. García de la Torre J, Harding SE, Carrasco B (1998) Biochem Soc Trans 26:716–721

    Google Scholar 

  33. Zipper P, Durchschlag H (1998) Biochem Soc Trans 26:726–731

    CAS  Google Scholar 

  34. García de la Torre J, Carrasco B (1998) Eur Biophys J 27:549–557

    Article  Google Scholar 

  35. García de la Torre J, Harding SE, Carrasco B (1999) Eur Biophys J 28:119–132

    Article  Google Scholar 

  36. Carrasco P, García de la Torre J, Zipper P (1999) Eur Biophys J (in press)

    Google Scholar 

  37. Zipper P, Durchschlag H (1999) In: SAS99, Abstracts of the 11th International Conference on Small-Angle Scattering. Brookhaven National Laboratory, Upton, New York, p 261

    Google Scholar 

  38. Harding SE (1989): In: Harding SE, Rowe AJ (eds) Dynamic properties of biomolecular assemblies. Royal Society of Chemistry, Cambridge, UK, pp 32–56

    Google Scholar 

  39. Harding SE (1995) Biophys Chem 55:69–93

    Article  CAS  Google Scholar 

  40. Harding SE (1997) Prog Biophys Mol Biol 68:207–262

    Article  CAS  Google Scholar 

  41. Kumosinski TF, Pessen H (1985) Methods Enzymol 117:154–182

    Article  CAS  Google Scholar 

  42. Pessen H, Kumosinski, TF (1993) In: Baianu IC, Pessen H, Kumosinski TF (eds) Physical chemistry of food processes, vol 2: advanced techniques, structures, and applications. Van Nostrand Reinhold, New York, pp 274–306

    Google Scholar 

  43. Durchschlag H, Zipper P, Purr G, Jaenicke R (1996) Colloid Polym Sci 274:117–137

    Article  CAS  Google Scholar 

  44. Durchschlag H, Zipper P (1996) J Mol Struct 383:223–229

    Article  CAS  Google Scholar 

  45. Durchschlag H, Zipper P (1997) J Appl Crystallogr 30:1112–1124

    Article  CAS  Google Scholar 

  46. Durchschlag H, Zipper P (1997) Prog Colloid Polym Sci 107:43–57

    Article  CAS  Google Scholar 

  47. Durchschlag H, Zipper P (1998) Biochem Soc Trans 26:731–736

    CAS  Google Scholar 

  48. Glatter O, Kratky O (eds) (1982) Small angle X-ray scattering. Academic Press, London

    Google Scholar 

  49. Durchschlag H (1993) In: Baianu IC, Pessen H, Kumosinski TF (eds) Physical chemistry of food processes, vol 2: advanced techniques, structures, and applications. Van Nostrand Reinhold, New York, pp 18–117

    Google Scholar 

  50. Kratky O (1971) In: Broda E, Locker A, Springer-Lederer H (eds) Proceedings of the 1st European Biophysics Congress, vol VI: theoretical molecular biology, biomechanics, biomathematics, environmental biophysics, techinques, education. Wiener Medizinische Akademie, Vienna, pp 373–396

    Google Scholar 

  51. Pessen H, Kumosinski TF (1985) Methods Enzymol 117:219–255

    Article  CAS  Google Scholar 

  52. Zhou H-X (1995) Biophys J 69:2298–2303

    CAS  Google Scholar 

  53. Durchschlag H, Zipper P, Wilfing R, Purr G (1991) J Appl Crystallogr 24:822–831

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Durchschlag .

Editor information

Helmut Cölfen

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Durchschlag, H., Zipper, P. (1999). Calculation of structural parameters from hydrodynamic data. In: Cölfen, H. (eds) Analytical Ultracentrifugation V. Progress in Colloid and Polymer Science, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48703-4_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-48703-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66175-7

  • Online ISBN: 978-3-540-48703-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics