Skip to main content

A New Transference Theorem in the Geometry of Numbers

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1627))

Included in the following conference series:

Abstract

We prove a new transference theorem in the geometry of numbers, giving optimal bounds relating the successive minima of a lattice with the minimal length of generating vectors of its dual. It generalizes the transference theorem due to Banaszczyk. The theorem is motivated by our efforts to improve Ajtai's connection factors in the connection of average-case to worst-case complexity of the shortest lattice vector problem. Our proofs are non-constructive, based on methods from harmonic analysis.

Research supported in part by NSF grant CCR-9634665 and a J. S. Guggenheim Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai. Generating hard instances of lattice problems. In Proc. 28th ACM Symposium on the Theory of Computing, 1996, 99–108. Full version available from ECCC as TR96-007.

    Google Scholar 

  2. M. Ajtai. The shortest vector problem in L 2 is NP-hard for randomized reductions. In Proc. 30th ACM Symposium on the Theory of Computing, 1998, 10–19. Full version available from ECCC as TR97-047.

    Google Scholar 

  3. M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In Proc. 29th ACM Symposium on the Theory of Computing, 1997, 284–293. Full version available from ECCC as TR96-065.

    Google Scholar 

  4. S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations. In Proc. 34th IEEE Symposium on Foundations of Computer Science (FOCS), 1993, 724–733.

    Google Scholar 

  5. L. Babai. On Lovász' lattice reduction and the nearest lattice point problem. Combinatorica, 6:1–13, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  6. W. Banaszczyk. New Bounds in Some Transference Theorems in the Geometry of Numbers. Mathematische Annalen, 296, pages 625–635, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  7. W. Banaszczyk. Inequalities for Convex Bodies and Polar Reciprocal Lattices in R n, Discrete and Computational Geometry, 13:217–231, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Banaszczyk. Inequalities for Convex Bodies and Polar Reciprocal Lattices in R n II: Application of K-Convexity. Discrete and Computational Geometry, 16:305–311, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  9. J-Y. Cai. A Relation of Primal-Dual Lattices and the Complexity of Shortest Lattice Vector Problem. Theoretical Computer Science (207), 1998, pp 105–116.

    Google Scholar 

  10. J-Y. Cai. Applications of a New Transference Theorem to Ajtai's Connection Factor. To appear in the 14th Annual IEEE Conference on Computational Complexity 1999.

    Google Scholar 

  11. J-Y. Cai and A. Nerurkar. An Improved Worst-Case to Average-Case Connection for Lattice Problems. In Proc. 38th IEEE Symposium on Foundations of Computer Science (FOCS), 1997, 468–477.

    Google Scholar 

  12. J-Y. Cai and A. Nerurkar. Approximating the SVP to within a factor (\( \left( {1 + \frac{1} {{\dim ^ \in }}} \right) \)) is NP-hard under randomized reductions. In Proc. of the 13th Annual IEEE Conference on Computational Complexity, 1998, 46–55.

    Google Scholar 

  13. J. W. S. Cassels. An Introduction to the Geometry of Numbers. Berlin Göttingen Heidelberg: Springer 1959.

    MATH  Google Scholar 

  14. I. Dinur, G. Kindler and S. Safra. Approximating CVP to within almost-polynomial factors is NP-hard. In Proc. 39th IEEE Symposium on Foundations of Computer Science, 1998, 99–109.

    Google Scholar 

  15. O. Goldreich and S. Goldwasser. On the Limits of Non-Approximability of Lattice Problems. In Proc. 30th ACM Symposium on Theory of Computing, 1998, 1–9.

    Google Scholar 

  16. O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lattice reduction problems. In Advances in Cryptology — CRYPTO '97, Burton S. Kaliski Jr. (Ed.), Lecture Notes in Computer Science, 1294:112–131, Springer-Verlag, 1997.

    Chapter  Google Scholar 

  17. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer Verlag, 1988.

    Google Scholar 

  18. P. M. Gruber. Handbook of Convex Geometry. Elsevier Science Publishers B.V., 1993.

    Google Scholar 

  19. P. M. Gruber and C. G. Lekkerkerker. Geometry of Numbers. North-Holland, 1987.

    Google Scholar 

  20. J. Håstad. Dual Vectors and Lower Bounds for the Nearest Lattice Point Problem. Combinatorica, Vol. 8, 1988, pages 75–81.

    Article  MATH  MathSciNet  Google Scholar 

  21. E. Hewitt and K. A. Ross. Abstract Harmonic Analysis, Vol II. Berlin Göttingen Heidelberg: Springer 1970.

    MATH  Google Scholar 

  22. A. Korkin and G. Zolotarev. Sur les formes quadratiques positives quaternaires. Mathematische Annalen, 5, 581–583, 1872.

    Article  MathSciNet  Google Scholar 

  23. J. C. Lagarias. The computational complexity of simultaneous diophantine approximation problems. SIAM Journal of Computing, Volume 14, page 196–209, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. C. Lagarias, H. W. Lenstra, and C. P. Schnorr. Korkin-Zolotarev Bases and Successive Minima of a Lattice and its Reciprocal Lattice. Combinatorica, 10:(4), 1990, 333–348.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261:515–534, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  26. H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Mathematics of Operations Research, 8:538–548, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  27. L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity. SIAM, Philadelphia, 1986.

    Google Scholar 

  28. K. Mahler. Ein Übertragungsprinzip für konvexe Körper. Čas. Pěstoväní Mat. Fys. 68, pages 93–102, 1939.

    MathSciNet  Google Scholar 

  29. D. Micciancio. The Shortest Vector in a Lattice is Hard to Approximate to within Some Constant. In Proc. 39th IEEE Symposium on Foundations of Computer Science, 1998, 92–98.

    Google Scholar 

  30. J. Milnor and D. Husemoller. Symmetric Bilinear Forms. Berlin Heidelberg New York: Springer 1973.

    MATH  Google Scholar 

  31. A. Odlyzko and H.J.J. te Riele. Disproof of the Mertens conjecture. Journal für die Reine und Angewandte Mathematik, 357:138–160, 1985.

    Article  MATH  Google Scholar 

  32. C. P. Schnorr. A hierarchy of polynomial time basis reduction algorithms. Theory of Algorithms, pages 375–386, 1985.

    Google Scholar 

  33. P. van Emde Boas. Another NP-complete partition problem and the complexity of computing short vectors in lattices. Technical Report 81-04, Mathematics Department, University of Amsterdam, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, JY. (1999). A New Transference Theorem in the Geometry of Numbers. In: Asano, T., Imai, H., Lee, D.T., Nakano, Si., Tokuyama, T. (eds) Computing and Combinatorics. COCOON 1999. Lecture Notes in Computer Science, vol 1627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48686-0_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-48686-0_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66200-6

  • Online ISBN: 978-3-540-48686-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics