Skip to main content

Real Computations with Fake Numbers

  • Conference paper
  • First Online:
Automata, Languages and Programming

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1644))

Abstract

During the last few years a theory of computation over the real numbers developed with the aim of laying theoretical foundations for the kind of computations performed in numerical analysis. In this paper we describe the notions playing major roles in this theory —with special emphasis on those which do not appear in discrete complexity theory— and review some of its results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Basu, R. Pollack, and M.-F. Roy. On the combinatorial and algebraic complexity of quantifier elimination. Journal of the ACM, 43:1002–1045, 1996.

    Article  MathSciNet  Google Scholar 

  2. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag, 1998.

    Google Scholar 

  3. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the Amer. Math. Soc., 21:1–46, 1989.

    Article  MathSciNet  Google Scholar 

  4. P. Bürgisser, M. Clausen, and A. Shokrollahi. Algebraic Complexity Theory. Springer-Verlag, 1996.

    Google Scholar 

  5. F. Cucker. PIR ≠ NCIR. Journal of Complexity, 8:230–238, 1992.

    Article  MathSciNet  Google Scholar 

  6. F. Cucker and S. Smale. Complexity estimates depending on condition and round-off error. To appear in Journal of the ACM, 1997.

    Google Scholar 

  7. L.S. de Jong. Towards a formal definition of numerical stability. Numer. Math., 28:211–219, 1977.

    Article  MathSciNet  Google Scholar 

  8. J.W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

    Google Scholar 

  9. C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1:211–218, 1936.

    Article  Google Scholar 

  10. H.H. Goldstine. A History of Numerical Analysis from the 16th through the 19th Century. Springer-Verlag, 1977.

    Google Scholar 

  11. J. Heintz, M.-F. Roy, and P. Solerno. FrSur la complexité du principe de Tarski-Seidenberg. Bulletin de la Société Mathématique de France, 118:101–126, 1990.

    Article  MathSciNet  Google Scholar 

  12. N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 1996.

    Google Scholar 

  13. D. Knuth. The Art of Computer Programming, volume 2, Seminumerical Algorithms. Addison-Wesley, 2 edition, 1981.

    Google Scholar 

  14. P. Koiran. The real dimension problem is NPIR-complete. To appear in Journal of Complexity, 1997.

    Google Scholar 

  15. A.M. Ostrowski. On two problems in abstract algebra connected with Horner’s rule. In Studies in Mathematics and Mechanics presented to Richard von Mises, pages 40–48. Academic Press, 1954.

    Google Scholar 

  16. V. Ya. Pan. Methods of computing values of polynomials. Russian Math. Surveys, 21:105–136, 1966.

    Article  Google Scholar 

  17. J. Renegar. On the computational complexity and geometry of the first-order theory of the reals. Part I. Journal of Symbolic Computation, 13:255–299, 1992.

    Article  MathSciNet  Google Scholar 

  18. J. Renegar. Some perturbation theory for linear programming. Mathematical Programming, 65:73–91, 1994.

    Article  MathSciNet  Google Scholar 

  19. J. Renegar. Incorporating condition measures into the complexity theory of linear programming. SIAM Journal of Optimization, 5:506–524, 1995.

    Article  MathSciNet  Google Scholar 

  20. J. Renegar. Linear programming, complexity theory and elementary functional analysis. Mathematical Programming, 70:279–351, 1995.

    MathSciNet  MATH  Google Scholar 

  21. M. Shub and S. Smale. Complexity of Bezout’s theorem I: geometric aspects. Journal of the Amer. Math. Soc., 6:459–501, 1993.

    MathSciNet  MATH  Google Scholar 

  22. M. Shub and S. Smale. Complexity of Bezout’s theorem II: volumes and probabilities. In F. Eyssette and A. Galligo, editors, Computational Algebraic Geometry, volume 109 of Progress in Mathematics, pages 267–285. Birkhäuser, 1993.

    Google Scholar 

  23. M. Shub and S. Smale. Complexity of Bezout’s theorem III: condition number and packing. Journal of Complexity, 9:4–14, 1993.

    Article  MathSciNet  Google Scholar 

  24. M. Shub and S. Smale. Complexity of Bezout’s theorem V: polynomial time. Theoretical Computer Science, 133:141–164, 1994.

    Article  MathSciNet  Google Scholar 

  25. M. Shub and S. Smale. Complexity of Bezout’s theorem IV: probability of success; extensions. SIAM J. of Numer. Anal., 33:128–148, 1996.

    Article  MathSciNet  Google Scholar 

  26. S. Smale. The fundamental theorem of algebra and complexity theory. Bulletin of the Amer. Math. Soc., 4:1–36, 1981.

    Article  MathSciNet  Google Scholar 

  27. S. Smale. Some remarks on the foundations of numerical analysis. SIAM Review, 32:211–220, 1990.

    Article  MathSciNet  Google Scholar 

  28. S. Smale. Complexity theory and numerical analysis. In A. Iserles, editor, Acta Numerica, pages 523–551. Cambridge University Press, 1997.

    Google Scholar 

  29. L.N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM, 1997.

    Google Scholar 

  30. L.N. Trefethen and R.S. Schreiber. Average-case stability of Gaussian elimination. SIAM J. Matrix Anal. Appl., 11:335–360, 1990.

    Article  MathSciNet  Google Scholar 

  31. E. Triesch. A note on a theorem of Blum, Shub, and Smale. Journal of Complexity, 6:166–169, 1990.

    Article  MathSciNet  Google Scholar 

  32. A.M. Turing. Rounding-off errors in matrix processes. Quart. J. Mech. Appl. Math., 1:287–308, 1948.

    Article  MathSciNet  Google Scholar 

  33. J. von Neumann and H.H. Goldstine. Numerical inverting matrices of high order. Bulletin of the Amer. Math. Soc., 53:1021–1099, 1947.

    Article  MathSciNet  Google Scholar 

  34. J. Wilkinson. Rounding Errors in Algebraic Processes. Prentice Hall, 1963.

    Google Scholar 

  35. J. Wilkinson. Modern error analyis. SIAM Review, 13:548–568, 1971.

    Article  MathSciNet  Google Scholar 

  36. H. Woźniakowski. Numerical stability for solving non-linear equations. Numer. Math., 27:373–390, 1977.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cucker, F. (1999). Real Computations with Fake Numbers. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds) Automata, Languages and Programming. Lecture Notes in Computer Science, vol 1644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48523-6_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-48523-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66224-2

  • Online ISBN: 978-3-540-48523-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics