Skip to main content

Approximations by OBDDs and the Variable Ordering Problem

  • Conference paper
  • First Online:
Automata, Languages and Programming

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1644))

Abstract

Ordered binary decision diagrams (OBDDs) and their variants are motivated by the need to represent Boolean functions in applications. Research concerning these applications leads also to problems and results interesting from a theoretical point of view. In this paper, methods from communication complexity and information theory are combined to prove that the direct storage access function and the inner product function have the following property. They have linear π-OBDD size for some variable ordering π and, for most variable orderings π’, all functions which approximate them on considerably more than half of the inputs, need exponential π’-OBDD size. These results have implications for the use of OBDDs in experiments with genetic programming.

Supported by DFG grant Kr 1521/3-1.

The research was partially supported by GA of the Czech Republic, Grant No. 201/98/0717.

Supported by DFG grant We 1066/8-1 and by the DFG as part of the Collaborative Research Center “Computational Intelligence” (531).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Babai, P. Frankl and J. Simon. Complexity classes in communication complexity theory. 27. FOCS, pp. 337–347, 1986.

    Google Scholar 

  2. A. Blumer, A. Ehrenfeucht, D. Haussler and M. Warmuth. Occam’s Razor. Information Processing Letters, 24, pp. 377–380, 1987.

    Article  MathSciNet  Google Scholar 

  3. A. Blumer, A. Ehrenfeucht, D. Haussler and M. Warmuth. Learnability and the Vapnik-Chervonenkis Dimension. Journal of the ACM, 36, pp. 929–965, 1989.

    Article  MathSciNet  Google Scholar 

  4. B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is NP-complete. IEEE Trans. on Computers 45, pp. 993–1002, 1996.

    Article  Google Scholar 

  5. R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Computers 35, pp. 677–691, 1986.

    Article  Google Scholar 

  6. R.E. Bryant. Symbolic manipulation with ordered binary decision diagrams. ACM Computing Surveys 24, pp. 293–318, 1992.

    Article  Google Scholar 

  7. S. Droste. Efficient genetic programming for finding good generalizing Boolean functions. Genetic Programming’97, pp. 82–87, 1997.

    Google Scholar 

  8. S. Droste. Genetic programming with guaranteed quality. Genetic Programming’98, pp. 54–59, 1998.

    Google Scholar 

  9. S. Droste and D. Wiesmann. On representation and genetic operators in evolutionary algorithms. Submitted to IEEE Trans. on Evolution Computation, 1998.

    Google Scholar 

  10. J. Hromkoviý. Communication Complexity and Parallel Computing. Springer, 1997.

    Google Scholar 

  11. M. Krause, P. Savický and I. Wegener. Approximations by OBDDs and the variable ordering problem. ECCC, TR99-011, http://www.eccc.uni-trier.de/eccc, 1999.

  12. J. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA: The MIT Press, 1992.

    MATH  Google Scholar 

  13. E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.

    Google Scholar 

  14. H. Sakanashi, T. Higuchi, H. Iba and K. Kakazu. An approach for genetic synthesizer of binary decision diagram. IEEE Int. Conf. on Evolutionary Computation, ICEC’96, pp. 559–564, 1996.

    Google Scholar 

  15. D. Sieling, On the existence of polynomial time approximation schemes for OBDD minimization. STACS’98, LNCS 1373, pp. 205–215, 1998.

    Google Scholar 

  16. I. Wegener. The Complexity of Boolean functions. Wiley-Teubner series in computer science, 1987.

    Google Scholar 

  17. I. Wegener. Efficient data structures for Boolean functions. Discrete Mathematics 136, pp. 347–372, 1994.

    Article  MathSciNet  Google Scholar 

  18. I. Wegener. Branching Programs and Binary Decision Diagrams-Theory and Applications. To appear: SIAM Monographs on Discrete Mathematics and Applications, 1999.

    Google Scholar 

  19. M. Yanagiya. Efficient genetic programming based on binary decision diagrams. IEEE Int. Conf. on Evolutionary Computation ICEC’95, pp. 234–239, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krause, M., Savický, P., Wegener, I. (1999). Approximations by OBDDs and the Variable Ordering Problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds) Automata, Languages and Programming. Lecture Notes in Computer Science, vol 1644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48523-6_46

Download citation

  • DOI: https://doi.org/10.1007/3-540-48523-6_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66224-2

  • Online ISBN: 978-3-540-48523-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics