Skip to main content

Computing the n × m Shortest Paths Efficiently

  • Chapter
  • First Online:
Algorithm Engineering and Experimentation (ALENEX 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1619))

Included in the following conference series:

Abstract

Computation of all the shortest paths between multiple sources and multiple destinations on various networks is required in many problems, such as the traveling salesperson problem (TSP) and the vehicle routing problem (VRP). This paper proposes new algorithms that compute the set of shortest paths efficiently by using the A* algorithm. The efficiency and properties of these algorithms are examined by using the results of experiments on an actual road network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Barr and E. A. Feigenbaum, Handbook of Artificial Intelligence, William Kaufman, Inc., Los Altos, Calif., 1981.

    MATH  Google Scholar 

  2. J. L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,” Commun. ACM, vol. 18, no. 9, 1975, pp. 509–517.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Champeaus, “Bidirectional Heuristic Search Again,” J. ACM, vol. 30, 1983, pp.22–32.

    Article  Google Scholar 

  4. B. V. Cherkassky, A. V. Goldberg, and C. Silverstein, “Buckets, heaps, lists and monotone priority queues,” Proc. 8th ACM-SIAM Symposium on Discrete Algorithms, 1997, pp. 83–92.

    Google Scholar 

  5. R. Dechter and J. Pearl, “Generalized Best-First Search Strategies and the Optimality of A*,” J. ACM, vol. 32, no. 3, 1985, pp. 505–536.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Dijkstra, “A Note on Two Problems in Connection with Graphs,” Numerical Mathematics, vol. 1, 1959, pp. 395–412.

    Article  MathSciNet  Google Scholar 

  7. M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms,” J. ACM, vol. 34, no. 3, 1987, pp. 596–615.

    Article  MathSciNet  Google Scholar 

  8. M. L. Fredman and D. E. Willard, “Trans-dichotomous algorithms for minimum spanning trees and shortest paths,” J. Comp. Syst. Sc. vol. 48, 1994, pp. 533–551.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Gelperin, “On the Optimality of A*,” Artif. Intell. vol. 8, no. 1, 1977, pp. 69–76.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. E. Hart, N. J. Nillson, and B. Rafael, “A Formal Basis for the Heuristic Determination of Minimum Cost Paths,” IEEE Trans. Sys. Sci. and Cyb. SSC-4, 1968, pp. 100–107.

    Google Scholar 

  11. T. Hiraga, Y. Koseki, Y. Kajitani, and A. Takahashi, “An Improved Bidirectional Search Algorithm for the 2 Terminal Shortest Path,” The 6th Karuizawa Workshop on Circuits and Systems, 1993, pp. 249–254 (in Japanese).

    Google Scholar 

  12. T. Ikeda, M. Y. Hsu, H. Imai, S. Nishimura, H. Shimoura, K. Tenmoku, and K. Mitoh, “A Fast Algorithm For Finding Better Routes By AI Search Techniques,” IEEE VNIS’94, 1994, pp. 90–99.

    Google Scholar 

  13. M. Luby and P. Ragde, “A Bidirectional Shortest-Path Algorithm With Good Average-Case Behavior,” Proc. 12th International Colloquium on Automata, Languages and Programming, LNCS 194, 1985, pp. 394–403.

    Chapter  Google Scholar 

  14. N. J. Nilsson, Problem-Solving Methods in Artificial Intelligence, McGraw-Hill, New York, 1971.

    Google Scholar 

  15. N. J. Nilsson, Principles of Artificial Intelligence, Tioga, Palo Alto, Calif., 1980.

    MATH  Google Scholar 

  16. I. Pohl, “Bi-Directional Search,” Machine Intelligence, vol. 6, pp. 127–140, 1971.

    MATH  Google Scholar 

  17. R. Raman, “Priority queues: small monotone, and trans-dichotomous,” Proc. ESA’96, LNCS 1136, 1996, pp. 121–137.

    Google Scholar 

  18. R. Raman, “A summary of shortest path results,” Technical Report TR 96-13, Kings College, London, 1996.

    Google Scholar 

  19. Y. Shirai and J. Tsuji, “Artificial Intelligence,” Iwanami Course: Information Science, vol. 22, Iwanami, Japan, 1982 (in Japanese).

    Google Scholar 

  20. M. Thorup, “On RAM priority queues,” Proc. 7th ACM-SIAM Symposium on Discrete Algorithms, 1996, pp. 59–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shibuya, T. (1999). Computing the n × m Shortest Paths Efficiently. In: Goodrich, M.T., McGeoch, C.C. (eds) Algorithm Engineering and Experimentation. ALENEX 1999. Lecture Notes in Computer Science, vol 1619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48518-X_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-48518-X_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66227-3

  • Online ISBN: 978-3-540-48518-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics